Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution
- Autores
- Althaus, Leandro Gabriel; Córsico, Alejandro Hugo; Gautschy, A.; Han, Z.; Serenelli, Aldo Marcelo; Panei, Jorge Alejandro
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The present work is designed to explore the evolutionary and pulsational properties of low-mass white dwarfs with carbon/oxygen cores. In particular, we follow the evolution of a 0.33-M⊙ white dwarf remnant in a self-consistent way with the predictions of nuclear burning, element diffusion and the history of the white dwarf progenitor. Attention is focused on the occurrence of hydrogen shell flashes induced by diffusion processes during cooling phases. The evolutionary stages prior to the white dwarf formation are also fully accounted for by computing the conservative binary evolution of an initially 2.5-M⊙ Population I star with a 1.25-M ⊙ companion, and with period Pi = 3d. Evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. We find that chemical diffusion induces the occurrence of an additional hydrogen thermonuclear flash, which leads to stellar models with thin hydrogen envelopes. As a result, a fast cooling is encountered at advanced stages of evolution. In addition, we explore the adiabatic pulsational properties of the resulting white dwarf models. As compared with their helium-core counterparts, low-mass oxygen-core white dwarfs are characterized by a pulsational spectrum much more featured, an aspect which could eventually be used for distinguishing both types of stars, if low-mass white dwarfs were in fact found to pulsate as ZZ Ceti-type variables. Finally, we perform a non-adiabatic pulsational analysis on the resulting carbon/oxygen low-mass white dwarf models.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata - Materia
-
Ciencias Astronómicas
Binaries: general
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84476
Ver los metadatos del registro completo
id |
SEDICI_47c5cbc8974b0fcb00a3b87bdc4d8ac1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84476 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolutionAlthaus, Leandro GabrielCórsico, Alejandro HugoGautschy, A.Han, Z.Serenelli, Aldo MarceloPanei, Jorge AlejandroCiencias AstronómicasBinaries: generalStars: evolutionStars: interiorsStars: oscillationsWhite dwarfsThe present work is designed to explore the evolutionary and pulsational properties of low-mass white dwarfs with carbon/oxygen cores. In particular, we follow the evolution of a 0.33-M⊙ white dwarf remnant in a self-consistent way with the predictions of nuclear burning, element diffusion and the history of the white dwarf progenitor. Attention is focused on the occurrence of hydrogen shell flashes induced by diffusion processes during cooling phases. The evolutionary stages prior to the white dwarf formation are also fully accounted for by computing the conservative binary evolution of an initially 2.5-M⊙ Population I star with a 1.25-M ⊙ companion, and with period P<SUB>i</SUB> = 3d. Evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. We find that chemical diffusion induces the occurrence of an additional hydrogen thermonuclear flash, which leads to stellar models with thin hydrogen envelopes. As a result, a fast cooling is encountered at advanced stages of evolution. In addition, we explore the adiabatic pulsational properties of the resulting white dwarf models. As compared with their helium-core counterparts, low-mass oxygen-core white dwarfs are characterized by a pulsational spectrum much more featured, an aspect which could eventually be used for distinguishing both types of stars, if low-mass white dwarfs were in fact found to pulsate as ZZ Ceti-type variables. Finally, we perform a non-adiabatic pulsational analysis on the resulting carbon/oxygen low-mass white dwarf models.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf125-136http://sedici.unlp.edu.ar/handle/10915/84476enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2004.07183.xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:15Zoai:sedici.unlp.edu.ar:10915/84476Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:15.447SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution |
title |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution |
spellingShingle |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution Althaus, Leandro Gabriel Ciencias Astronómicas Binaries: general Stars: evolution Stars: interiors Stars: oscillations White dwarfs |
title_short |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution |
title_full |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution |
title_fullStr |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution |
title_full_unstemmed |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution |
title_sort |
Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution |
dc.creator.none.fl_str_mv |
Althaus, Leandro Gabriel Córsico, Alejandro Hugo Gautschy, A. Han, Z. Serenelli, Aldo Marcelo Panei, Jorge Alejandro |
author |
Althaus, Leandro Gabriel |
author_facet |
Althaus, Leandro Gabriel Córsico, Alejandro Hugo Gautschy, A. Han, Z. Serenelli, Aldo Marcelo Panei, Jorge Alejandro |
author_role |
author |
author2 |
Córsico, Alejandro Hugo Gautschy, A. Han, Z. Serenelli, Aldo Marcelo Panei, Jorge Alejandro |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Binaries: general Stars: evolution Stars: interiors Stars: oscillations White dwarfs |
topic |
Ciencias Astronómicas Binaries: general Stars: evolution Stars: interiors Stars: oscillations White dwarfs |
dc.description.none.fl_txt_mv |
The present work is designed to explore the evolutionary and pulsational properties of low-mass white dwarfs with carbon/oxygen cores. In particular, we follow the evolution of a 0.33-M⊙ white dwarf remnant in a self-consistent way with the predictions of nuclear burning, element diffusion and the history of the white dwarf progenitor. Attention is focused on the occurrence of hydrogen shell flashes induced by diffusion processes during cooling phases. The evolutionary stages prior to the white dwarf formation are also fully accounted for by computing the conservative binary evolution of an initially 2.5-M⊙ Population I star with a 1.25-M ⊙ companion, and with period P<SUB>i</SUB> = 3d. Evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. We find that chemical diffusion induces the occurrence of an additional hydrogen thermonuclear flash, which leads to stellar models with thin hydrogen envelopes. As a result, a fast cooling is encountered at advanced stages of evolution. In addition, we explore the adiabatic pulsational properties of the resulting white dwarf models. As compared with their helium-core counterparts, low-mass oxygen-core white dwarfs are characterized by a pulsational spectrum much more featured, an aspect which could eventually be used for distinguishing both types of stars, if low-mass white dwarfs were in fact found to pulsate as ZZ Ceti-type variables. Finally, we perform a non-adiabatic pulsational analysis on the resulting carbon/oxygen low-mass white dwarf models. Facultad de Ciencias Astronómicas y Geofísicas Instituto de Astrofísica de La Plata |
description |
The present work is designed to explore the evolutionary and pulsational properties of low-mass white dwarfs with carbon/oxygen cores. In particular, we follow the evolution of a 0.33-M⊙ white dwarf remnant in a self-consistent way with the predictions of nuclear burning, element diffusion and the history of the white dwarf progenitor. Attention is focused on the occurrence of hydrogen shell flashes induced by diffusion processes during cooling phases. The evolutionary stages prior to the white dwarf formation are also fully accounted for by computing the conservative binary evolution of an initially 2.5-M⊙ Population I star with a 1.25-M ⊙ companion, and with period P<SUB>i</SUB> = 3d. Evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. We find that chemical diffusion induces the occurrence of an additional hydrogen thermonuclear flash, which leads to stellar models with thin hydrogen envelopes. As a result, a fast cooling is encountered at advanced stages of evolution. In addition, we explore the adiabatic pulsational properties of the resulting white dwarf models. As compared with their helium-core counterparts, low-mass oxygen-core white dwarfs are characterized by a pulsational spectrum much more featured, an aspect which could eventually be used for distinguishing both types of stars, if low-mass white dwarfs were in fact found to pulsate as ZZ Ceti-type variables. Finally, we perform a non-adiabatic pulsational analysis on the resulting carbon/oxygen low-mass white dwarf models. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84476 |
url |
http://sedici.unlp.edu.ar/handle/10915/84476 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0035-8711 info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2004.07183.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 125-136 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616034931179520 |
score |
13.070432 |