Mining the biomedical literature to predict shared drug targets in drugbank
- Autores
- Caniza, Horacio; Galeano, Diego; Paccanaro, Alberto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a measure that can predict shared targets for drugs in DrugBank through large scale analysis of the biomedical literature. We show that using MeSH ontology terms can accurately describe the drugs and that appropriate use of the MeSH ontological structure can determine pairwise drug similarity.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
MeSH terms
drug descriptors
drug targets
drugbank - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/63201
Ver los metadatos del registro completo
id |
SEDICI_4647823a72d48f7b1c40fef94384bc67 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/63201 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Mining the biomedical literature to predict shared drug targets in drugbankCaniza, HoracioGaleano, DiegoPaccanaro, AlbertoCiencias InformáticasMeSH termsdrug descriptorsdrug targetsdrugbankThe current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a measure that can predict shared targets for drugs in DrugBank through large scale analysis of the biomedical literature. We show that using MeSH ontology terms can accurately describe the drugs and that appropriate use of the MeSH ontological structure can determine pairwise drug similarity.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2017-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/63201enginfo:eu-repo/semantics/altIdentifier/url/http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/SLMDI/SLMDI-03.pdfinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:00:47Zoai:sedici.unlp.edu.ar:10915/63201Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:00:48.197SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Mining the biomedical literature to predict shared drug targets in drugbank |
title |
Mining the biomedical literature to predict shared drug targets in drugbank |
spellingShingle |
Mining the biomedical literature to predict shared drug targets in drugbank Caniza, Horacio Ciencias Informáticas MeSH terms drug descriptors drug targets drugbank |
title_short |
Mining the biomedical literature to predict shared drug targets in drugbank |
title_full |
Mining the biomedical literature to predict shared drug targets in drugbank |
title_fullStr |
Mining the biomedical literature to predict shared drug targets in drugbank |
title_full_unstemmed |
Mining the biomedical literature to predict shared drug targets in drugbank |
title_sort |
Mining the biomedical literature to predict shared drug targets in drugbank |
dc.creator.none.fl_str_mv |
Caniza, Horacio Galeano, Diego Paccanaro, Alberto |
author |
Caniza, Horacio |
author_facet |
Caniza, Horacio Galeano, Diego Paccanaro, Alberto |
author_role |
author |
author2 |
Galeano, Diego Paccanaro, Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas MeSH terms drug descriptors drug targets drugbank |
topic |
Ciencias Informáticas MeSH terms drug descriptors drug targets drugbank |
dc.description.none.fl_txt_mv |
The current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a measure that can predict shared targets for drugs in DrugBank through large scale analysis of the biomedical literature. We show that using MeSH ontology terms can accurately describe the drugs and that appropriate use of the MeSH ontological structure can determine pairwise drug similarity. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
The current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a measure that can predict shared targets for drugs in DrugBank through large scale analysis of the biomedical literature. We show that using MeSH ontology terms can accurately describe the drugs and that appropriate use of the MeSH ontological structure can determine pairwise drug similarity. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/63201 |
url |
http://sedici.unlp.edu.ar/handle/10915/63201 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/SLMDI/SLMDI-03.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064058421215232 |
score |
13.22299 |