Gamma-ray binaries beyond one-zone models: an application to LS 5039

Autores
Palacio, Santiago del; Bosch Ramon, Valentí; Romero, Gustavo Esteban
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Several binary systems hosting massive stars present gamma-ray emission. In most of these systems, despite detailed observational information being available, the nature and the structure of the emitter are still poorly known. Aims. We investigate the validity of the so-called one-zone approximation for the high-energy emitter in binary systems hosting a massive star. In particular, the case of LS 5039 is considered. Methods. Assuming a point-like emitter at rest, the presence of a nearby massive star, and the observed MeV and GeV fluxes as a reference, a non-thermal leptonic model is systematically applied for different locations, magnetic fields, and non-radiative losses. This allows us to identify both the emitter configurations that are most compatible with observations and inconsistencies between model predictions and the available data. Results. In the case of LS 5039, the best parameter combination is fast non-radiative cooling and a low magnetic field. However, discrepancies appear when comparing the model results at the MeV and GeV energy ranges with the observed fluxes. Predictions fail when the orbital motion is included in the analysis, because emitters and energy budgets that are too large are required. Values of X-ray and TeV fluxes that are too high are predicted in such a case, along half of the orbit. Conclusions. We show that the radiation in LS 5039 does not come from only one electron population, and the emitter is likely extended and inhomogeneous with a low magnetic field. We suggest that the emitter moves at relativistic velocities with Doppler boosting playing a significant role.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto Argentino de Radioastronomía
Materia
Ciencias Astronómicas
Radiation mechanisms: non-thermal
Relativistic processes
Stars: massive
X-rays: binaries
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86069

id SEDICI_454e2af37c1ff76e00c1e97fe554b04b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86069
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Gamma-ray binaries beyond one-zone models: an application to LS 5039Palacio, Santiago delBosch Ramon, ValentíRomero, Gustavo EstebanCiencias AstronómicasRadiation mechanisms: non-thermalRelativistic processesStars: massiveX-rays: binariesContext. Several binary systems hosting massive stars present gamma-ray emission. In most of these systems, despite detailed observational information being available, the nature and the structure of the emitter are still poorly known. Aims. We investigate the validity of the so-called one-zone approximation for the high-energy emitter in binary systems hosting a massive star. In particular, the case of LS 5039 is considered. Methods. Assuming a point-like emitter at rest, the presence of a nearby massive star, and the observed MeV and GeV fluxes as a reference, a non-thermal leptonic model is systematically applied for different locations, magnetic fields, and non-radiative losses. This allows us to identify both the emitter configurations that are most compatible with observations and inconsistencies between model predictions and the available data. Results. In the case of LS 5039, the best parameter combination is fast non-radiative cooling and a low magnetic field. However, discrepancies appear when comparing the model results at the MeV and GeV energy ranges with the observed fluxes. Predictions fail when the orbital motion is included in the analysis, because emitters and energy budgets that are too large are required. Values of X-ray and TeV fluxes that are too high are predicted in such a case, along half of the orbit. Conclusions. We show that the radiation in LS 5039 does not come from only one electron population, and the emitter is likely extended and inhomogeneous with a low magnetic field. We suggest that the emitter moves at relativistic velocities with Doppler boosting playing a significant role.Facultad de Ciencias Astronómicas y GeofísicasInstituto Argentino de Radioastronomía2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86069enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201424713info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:17:00Zoai:sedici.unlp.edu.ar:10915/86069Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:17:00.362SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Gamma-ray binaries beyond one-zone models: an application to LS 5039
title Gamma-ray binaries beyond one-zone models: an application to LS 5039
spellingShingle Gamma-ray binaries beyond one-zone models: an application to LS 5039
Palacio, Santiago del
Ciencias Astronómicas
Radiation mechanisms: non-thermal
Relativistic processes
Stars: massive
X-rays: binaries
title_short Gamma-ray binaries beyond one-zone models: an application to LS 5039
title_full Gamma-ray binaries beyond one-zone models: an application to LS 5039
title_fullStr Gamma-ray binaries beyond one-zone models: an application to LS 5039
title_full_unstemmed Gamma-ray binaries beyond one-zone models: an application to LS 5039
title_sort Gamma-ray binaries beyond one-zone models: an application to LS 5039
dc.creator.none.fl_str_mv Palacio, Santiago del
Bosch Ramon, Valentí
Romero, Gustavo Esteban
author Palacio, Santiago del
author_facet Palacio, Santiago del
Bosch Ramon, Valentí
Romero, Gustavo Esteban
author_role author
author2 Bosch Ramon, Valentí
Romero, Gustavo Esteban
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Radiation mechanisms: non-thermal
Relativistic processes
Stars: massive
X-rays: binaries
topic Ciencias Astronómicas
Radiation mechanisms: non-thermal
Relativistic processes
Stars: massive
X-rays: binaries
dc.description.none.fl_txt_mv Context. Several binary systems hosting massive stars present gamma-ray emission. In most of these systems, despite detailed observational information being available, the nature and the structure of the emitter are still poorly known. Aims. We investigate the validity of the so-called one-zone approximation for the high-energy emitter in binary systems hosting a massive star. In particular, the case of LS 5039 is considered. Methods. Assuming a point-like emitter at rest, the presence of a nearby massive star, and the observed MeV and GeV fluxes as a reference, a non-thermal leptonic model is systematically applied for different locations, magnetic fields, and non-radiative losses. This allows us to identify both the emitter configurations that are most compatible with observations and inconsistencies between model predictions and the available data. Results. In the case of LS 5039, the best parameter combination is fast non-radiative cooling and a low magnetic field. However, discrepancies appear when comparing the model results at the MeV and GeV energy ranges with the observed fluxes. Predictions fail when the orbital motion is included in the analysis, because emitters and energy budgets that are too large are required. Values of X-ray and TeV fluxes that are too high are predicted in such a case, along half of the orbit. Conclusions. We show that the radiation in LS 5039 does not come from only one electron population, and the emitter is likely extended and inhomogeneous with a low magnetic field. We suggest that the emitter moves at relativistic velocities with Doppler boosting playing a significant role.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto Argentino de Radioastronomía
description Context. Several binary systems hosting massive stars present gamma-ray emission. In most of these systems, despite detailed observational information being available, the nature and the structure of the emitter are still poorly known. Aims. We investigate the validity of the so-called one-zone approximation for the high-energy emitter in binary systems hosting a massive star. In particular, the case of LS 5039 is considered. Methods. Assuming a point-like emitter at rest, the presence of a nearby massive star, and the observed MeV and GeV fluxes as a reference, a non-thermal leptonic model is systematically applied for different locations, magnetic fields, and non-radiative losses. This allows us to identify both the emitter configurations that are most compatible with observations and inconsistencies between model predictions and the available data. Results. In the case of LS 5039, the best parameter combination is fast non-radiative cooling and a low magnetic field. However, discrepancies appear when comparing the model results at the MeV and GeV energy ranges with the observed fluxes. Predictions fail when the orbital motion is included in the analysis, because emitters and energy budgets that are too large are required. Values of X-ray and TeV fluxes that are too high are predicted in such a case, along half of the orbit. Conclusions. We show that the radiation in LS 5039 does not come from only one electron population, and the emitter is likely extended and inhomogeneous with a low magnetic field. We suggest that the emitter moves at relativistic velocities with Doppler boosting playing a significant role.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86069
url http://sedici.unlp.edu.ar/handle/10915/86069
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201424713
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616043023040512
score 13.070432