Supporting nested parallelism
- Autores
- Gonzalez, Jesús A.; León, Coromoto; Piccoli, María Fabiana; Printista, Alicia Marcela; Roda García, José Luis; Rodríguez, Casiano; Sande Gonzalez, Francisco de
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Many parallel applications do not completely fit into the data parallel model. Although these applications contain data parallelism, task parallelism is needed to represent the natural computation structure or enhance performance. To combine the easiness of programming of the data parallel model with the efficiency of the task parallel model allows to parallel forms to be nested, giving Nested parallelism. In this work, we examine the solutions provided to N ested parallelism in two standard parallel programming platforms, HPF and MPI. Both their expression capacity and their efficiency are compared on a Cray- 3TE, which is distributed memory machine. Finally, an additional speech about the use of the methodology proposed for MPI is done on two different architectures
I Workshop de Procesamiento Distribuido y Paralelo (WPDP)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
nested parallel model
divide and conquer technique
Parallel programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23361
Ver los metadatos del registro completo
id |
SEDICI_433119d7b6d52fac35b969e3cd9cd50c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23361 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Supporting nested parallelismGonzalez, Jesús A.León, CoromotoPiccoli, María FabianaPrintista, Alicia MarcelaRoda García, José LuisRodríguez, CasianoSande Gonzalez, Francisco deCiencias Informáticasnested parallel modeldivide and conquer techniqueParallel programmingMany parallel applications do not completely fit into the data parallel model. Although these applications contain data parallelism, task parallelism is needed to represent the natural computation structure or enhance performance. To combine the easiness of programming of the data parallel model with the efficiency of the task parallel model allows to parallel forms to be nested, giving Nested parallelism. In this work, we examine the solutions provided to N ested parallelism in two standard parallel programming platforms, HPF and MPI. Both their expression capacity and their efficiency are compared on a Cray- 3TE, which is distributed memory machine. Finally, an additional speech about the use of the methodology proposed for MPI is done on two different architecturesI Workshop de Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI)2000-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23361enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:25Zoai:sedici.unlp.edu.ar:10915/23361Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:26.002SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Supporting nested parallelism |
title |
Supporting nested parallelism |
spellingShingle |
Supporting nested parallelism Gonzalez, Jesús A. Ciencias Informáticas nested parallel model divide and conquer technique Parallel programming |
title_short |
Supporting nested parallelism |
title_full |
Supporting nested parallelism |
title_fullStr |
Supporting nested parallelism |
title_full_unstemmed |
Supporting nested parallelism |
title_sort |
Supporting nested parallelism |
dc.creator.none.fl_str_mv |
Gonzalez, Jesús A. León, Coromoto Piccoli, María Fabiana Printista, Alicia Marcela Roda García, José Luis Rodríguez, Casiano Sande Gonzalez, Francisco de |
author |
Gonzalez, Jesús A. |
author_facet |
Gonzalez, Jesús A. León, Coromoto Piccoli, María Fabiana Printista, Alicia Marcela Roda García, José Luis Rodríguez, Casiano Sande Gonzalez, Francisco de |
author_role |
author |
author2 |
León, Coromoto Piccoli, María Fabiana Printista, Alicia Marcela Roda García, José Luis Rodríguez, Casiano Sande Gonzalez, Francisco de |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas nested parallel model divide and conquer technique Parallel programming |
topic |
Ciencias Informáticas nested parallel model divide and conquer technique Parallel programming |
dc.description.none.fl_txt_mv |
Many parallel applications do not completely fit into the data parallel model. Although these applications contain data parallelism, task parallelism is needed to represent the natural computation structure or enhance performance. To combine the easiness of programming of the data parallel model with the efficiency of the task parallel model allows to parallel forms to be nested, giving Nested parallelism. In this work, we examine the solutions provided to N ested parallelism in two standard parallel programming platforms, HPF and MPI. Both their expression capacity and their efficiency are compared on a Cray- 3TE, which is distributed memory machine. Finally, an additional speech about the use of the methodology proposed for MPI is done on two different architectures I Workshop de Procesamiento Distribuido y Paralelo (WPDP) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Many parallel applications do not completely fit into the data parallel model. Although these applications contain data parallelism, task parallelism is needed to represent the natural computation structure or enhance performance. To combine the easiness of programming of the data parallel model with the efficiency of the task parallel model allows to parallel forms to be nested, giving Nested parallelism. In this work, we examine the solutions provided to N ested parallelism in two standard parallel programming platforms, HPF and MPI. Both their expression capacity and their efficiency are compared on a Cray- 3TE, which is distributed memory machine. Finally, an additional speech about the use of the methodology proposed for MPI is done on two different architectures |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23361 |
url |
http://sedici.unlp.edu.ar/handle/10915/23361 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615813219221504 |
score |
13.070432 |