Finite element updating of a bridge model using operational modal analysis

Autores
Wagner, Gustavo; Milheiro, Pablo; Lima, Roberta; Sampaio, Rubens
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Operational Modal Analysis (OMA) consist in finding the dynamic characteristic of a structure through its modal parameters using output-only signals. Differently from the classical approach of Experimental Modal Analysis (EMA), where the input signal are also measured, OMA only uses the stochastic nature of the inputs, assumed to be random due the ambient conditions. An important application of this technique appears in the model validation, where numerical and experimental results are compared (Brincker and Ventura, 2015).Because of the large size of bridges, the identification of this kind of structures are restricted to operational modal analysis. Output-only methods are necessary since a controlled input is usually hard and expensive to apply. Also, the ambient forces such as wind, waves, traffic and ground motion can notbe eliminated. The advantage of OMA when compared to EMA is that those forces do not need to be measured and quantified.In this paper, the stochastic subspace identification method is used to characterize the dynamic behavior of a small bridge model under wind load (Overschee and Moor, 1996)(Wagner et al., 2017). The identified natural frequencies and mode shapes are used to validate its finite element model, specially regarding the imposed boundary conditions (clamp-clamp). In reality, those conditions are uncertain and need to be taken into account to improve the predictability of the model (Ritto et al., 2008)(Ritto et al.,2016). The clamp condition is changed into a free condition with displacements and torsional linear springs, where the uncertainties parameters are the respective stiffnesses.
Publicado en: Mecánica Computacional vol. XXXV, no. 22
Facultad de Ingeniería
Materia
Ingeniería
Operational modal analysis
Dynamics
Bridge structures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/103830

id SEDICI_3fcc99072a4e985e51664c3917ca1739
oai_identifier_str oai:sedici.unlp.edu.ar:10915/103830
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Finite element updating of a bridge model using operational modal analysisWagner, GustavoMilheiro, PabloLima, RobertaSampaio, RubensIngenieríaOperational modal analysisDynamicsBridge structuresOperational Modal Analysis (OMA) consist in finding the dynamic characteristic of a structure through its modal parameters using output-only signals. Differently from the classical approach of Experimental Modal Analysis (EMA), where the input signal are also measured, OMA only uses the stochastic nature of the inputs, assumed to be random due the ambient conditions. An important application of this technique appears in the model validation, where numerical and experimental results are compared (Brincker and Ventura, 2015).Because of the large size of bridges, the identification of this kind of structures are restricted to operational modal analysis. Output-only methods are necessary since a controlled input is usually hard and expensive to apply. Also, the ambient forces such as wind, waves, traffic and ground motion can notbe eliminated. The advantage of OMA when compared to EMA is that those forces do not need to be measured and quantified.In this paper, the stochastic subspace identification method is used to characterize the dynamic behavior of a small bridge model under wind load (Overschee and Moor, 1996)(Wagner et al., 2017). The identified natural frequencies and mode shapes are used to validate its finite element model, specially regarding the imposed boundary conditions (clamp-clamp). In reality, those conditions are uncertain and need to be taken into account to improve the predictability of the model (Ritto et al., 2008)(Ritto et al.,2016). The clamp condition is changed into a free condition with displacements and torsional linear springs, where the uncertainties parameters are the respective stiffnesses.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 22Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1249-1249http://sedici.unlp.edu.ar/handle/10915/103830enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5344info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:14:30Zoai:sedici.unlp.edu.ar:10915/103830Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:14:30.378SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Finite element updating of a bridge model using operational modal analysis
title Finite element updating of a bridge model using operational modal analysis
spellingShingle Finite element updating of a bridge model using operational modal analysis
Wagner, Gustavo
Ingeniería
Operational modal analysis
Dynamics
Bridge structures
title_short Finite element updating of a bridge model using operational modal analysis
title_full Finite element updating of a bridge model using operational modal analysis
title_fullStr Finite element updating of a bridge model using operational modal analysis
title_full_unstemmed Finite element updating of a bridge model using operational modal analysis
title_sort Finite element updating of a bridge model using operational modal analysis
dc.creator.none.fl_str_mv Wagner, Gustavo
Milheiro, Pablo
Lima, Roberta
Sampaio, Rubens
author Wagner, Gustavo
author_facet Wagner, Gustavo
Milheiro, Pablo
Lima, Roberta
Sampaio, Rubens
author_role author
author2 Milheiro, Pablo
Lima, Roberta
Sampaio, Rubens
author2_role author
author
author
dc.subject.none.fl_str_mv Ingeniería
Operational modal analysis
Dynamics
Bridge structures
topic Ingeniería
Operational modal analysis
Dynamics
Bridge structures
dc.description.none.fl_txt_mv Operational Modal Analysis (OMA) consist in finding the dynamic characteristic of a structure through its modal parameters using output-only signals. Differently from the classical approach of Experimental Modal Analysis (EMA), where the input signal are also measured, OMA only uses the stochastic nature of the inputs, assumed to be random due the ambient conditions. An important application of this technique appears in the model validation, where numerical and experimental results are compared (Brincker and Ventura, 2015).Because of the large size of bridges, the identification of this kind of structures are restricted to operational modal analysis. Output-only methods are necessary since a controlled input is usually hard and expensive to apply. Also, the ambient forces such as wind, waves, traffic and ground motion can notbe eliminated. The advantage of OMA when compared to EMA is that those forces do not need to be measured and quantified.In this paper, the stochastic subspace identification method is used to characterize the dynamic behavior of a small bridge model under wind load (Overschee and Moor, 1996)(Wagner et al., 2017). The identified natural frequencies and mode shapes are used to validate its finite element model, specially regarding the imposed boundary conditions (clamp-clamp). In reality, those conditions are uncertain and need to be taken into account to improve the predictability of the model (Ritto et al., 2008)(Ritto et al.,2016). The clamp condition is changed into a free condition with displacements and torsional linear springs, where the uncertainties parameters are the respective stiffnesses.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 22
Facultad de Ingeniería
description Operational Modal Analysis (OMA) consist in finding the dynamic characteristic of a structure through its modal parameters using output-only signals. Differently from the classical approach of Experimental Modal Analysis (EMA), where the input signal are also measured, OMA only uses the stochastic nature of the inputs, assumed to be random due the ambient conditions. An important application of this technique appears in the model validation, where numerical and experimental results are compared (Brincker and Ventura, 2015).Because of the large size of bridges, the identification of this kind of structures are restricted to operational modal analysis. Output-only methods are necessary since a controlled input is usually hard and expensive to apply. Also, the ambient forces such as wind, waves, traffic and ground motion can notbe eliminated. The advantage of OMA when compared to EMA is that those forces do not need to be measured and quantified.In this paper, the stochastic subspace identification method is used to characterize the dynamic behavior of a small bridge model under wind load (Overschee and Moor, 1996)(Wagner et al., 2017). The identified natural frequencies and mode shapes are used to validate its finite element model, specially regarding the imposed boundary conditions (clamp-clamp). In reality, those conditions are uncertain and need to be taken into account to improve the predictability of the model (Ritto et al., 2008)(Ritto et al.,2016). The clamp condition is changed into a free condition with displacements and torsional linear springs, where the uncertainties parameters are the respective stiffnesses.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/103830
url http://sedici.unlp.edu.ar/handle/10915/103830
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5344
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1249-1249
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064202897162240
score 13.22299