Electric vehicle battery charging with safe-RL

Autores
Trimboli, Maximiliano; Avila, Luis; Antonelli, Nicolás
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
To become the standard power supply for electric vehicles(EVs), Li-ion batteries need balanced current profiles in order to avoidundesirable electrochemical reactions and excessive charging times. Inthis work, we propose a safe exploration deep reinforcement learning(SDRL) approach in order to determine optimal charging profiles undervariable operating conditions. One of the main advantages of reinforce-ment learning (RL) techniques is that they can learn from interactionwith the real or simulated system while incorporating the nonlinear-ity and uncertainty derived from fluctuating environmental conditions.However, since RL techniques have to explore undesirable states beforeobtaining an optimal policy, no safety guarantees are provided. The pro-posed approach aims at maintaining zero constraint violations through-out the learning process by incorporating a safety layer that corrects theaction if a constraint is likely to be violated. Tests performed on theequivalent circuit of a li-ion battery under variability conditions showearly results where SDRL is able to find safe policies while consideringa trade-off between the charging speed and the battery lifespan.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Safe-RL
State of Charge
Battery aging
Variability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/165927

id SEDICI_3cca9dee09623d08148bc0fdeb160759
oai_identifier_str oai:sedici.unlp.edu.ar:10915/165927
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Electric vehicle battery charging with safe-RLTrimboli, MaximilianoAvila, LuisAntonelli, NicolásCiencias InformáticasSafe-RLState of ChargeBattery agingVariabilityTo become the standard power supply for electric vehicles(EVs), Li-ion batteries need balanced current profiles in order to avoidundesirable electrochemical reactions and excessive charging times. Inthis work, we propose a safe exploration deep reinforcement learning(SDRL) approach in order to determine optimal charging profiles undervariable operating conditions. One of the main advantages of reinforce-ment learning (RL) techniques is that they can learn from interactionwith the real or simulated system while incorporating the nonlinear-ity and uncertainty derived from fluctuating environmental conditions.However, since RL techniques have to explore undesirable states beforeobtaining an optimal policy, no safety guarantees are provided. The pro-posed approach aims at maintaining zero constraint violations through-out the learning process by incorporating a safety layer that corrects theaction if a constraint is likely to be violated. Tests performed on theequivalent circuit of a li-ion battery under variability conditions showearly results where SDRL is able to find safe policies while consideringa trade-off between the charging speed and the battery lifespan.Sociedad Argentina de Informática e Investigación Operativa2023-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf37-50http://sedici.unlp.edu.ar/handle/10915/165927enginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/622info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:24:50Zoai:sedici.unlp.edu.ar:10915/165927Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:24:51.19SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Electric vehicle battery charging with safe-RL
title Electric vehicle battery charging with safe-RL
spellingShingle Electric vehicle battery charging with safe-RL
Trimboli, Maximiliano
Ciencias Informáticas
Safe-RL
State of Charge
Battery aging
Variability
title_short Electric vehicle battery charging with safe-RL
title_full Electric vehicle battery charging with safe-RL
title_fullStr Electric vehicle battery charging with safe-RL
title_full_unstemmed Electric vehicle battery charging with safe-RL
title_sort Electric vehicle battery charging with safe-RL
dc.creator.none.fl_str_mv Trimboli, Maximiliano
Avila, Luis
Antonelli, Nicolás
author Trimboli, Maximiliano
author_facet Trimboli, Maximiliano
Avila, Luis
Antonelli, Nicolás
author_role author
author2 Avila, Luis
Antonelli, Nicolás
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Safe-RL
State of Charge
Battery aging
Variability
topic Ciencias Informáticas
Safe-RL
State of Charge
Battery aging
Variability
dc.description.none.fl_txt_mv To become the standard power supply for electric vehicles(EVs), Li-ion batteries need balanced current profiles in order to avoidundesirable electrochemical reactions and excessive charging times. Inthis work, we propose a safe exploration deep reinforcement learning(SDRL) approach in order to determine optimal charging profiles undervariable operating conditions. One of the main advantages of reinforce-ment learning (RL) techniques is that they can learn from interactionwith the real or simulated system while incorporating the nonlinear-ity and uncertainty derived from fluctuating environmental conditions.However, since RL techniques have to explore undesirable states beforeobtaining an optimal policy, no safety guarantees are provided. The pro-posed approach aims at maintaining zero constraint violations through-out the learning process by incorporating a safety layer that corrects theaction if a constraint is likely to be violated. Tests performed on theequivalent circuit of a li-ion battery under variability conditions showearly results where SDRL is able to find safe policies while consideringa trade-off between the charging speed and the battery lifespan.
Sociedad Argentina de Informática e Investigación Operativa
description To become the standard power supply for electric vehicles(EVs), Li-ion batteries need balanced current profiles in order to avoidundesirable electrochemical reactions and excessive charging times. Inthis work, we propose a safe exploration deep reinforcement learning(SDRL) approach in order to determine optimal charging profiles undervariable operating conditions. One of the main advantages of reinforce-ment learning (RL) techniques is that they can learn from interactionwith the real or simulated system while incorporating the nonlinear-ity and uncertainty derived from fluctuating environmental conditions.However, since RL techniques have to explore undesirable states beforeobtaining an optimal policy, no safety guarantees are provided. The pro-posed approach aims at maintaining zero constraint violations through-out the learning process by incorporating a safety layer that corrects theaction if a constraint is likely to be violated. Tests performed on theequivalent circuit of a li-ion battery under variability conditions showearly results where SDRL is able to find safe policies while consideringa trade-off between the charging speed and the battery lifespan.
publishDate 2023
dc.date.none.fl_str_mv 2023-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/165927
url http://sedici.unlp.edu.ar/handle/10915/165927
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/622
info:eu-repo/semantics/altIdentifier/issn/2451-7496
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
37-50
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783705245286400
score 12.982451