High load vortex oscillations developed in Francis turbines

Autores
Rodríguez, Daniel Amancio; Rivetti, Arturo; Lucino, Cecilia Verónica
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Francis turbines operating at high load conditions produce a typical flow pattern in the draft tube cone characterized by the presence of an axisymmetric central vortex. This central cavity could become unstable, generating synchronic pressure pulsations, usually called self-excited oscillations, which propagate into the whole machine. The on-set and size of the central vortex cavity depend on the geometry of the runner and draft tube and on the operating point as well. Numerical flow simulations and model tests allow for the characterization of the different flow patterns induced by each particular Francis turbine design and, when studied in combination with the hydraulic system, including the intake and penstock, could predict the prototype hydraulic behavior for the complete operation zone. The present work focuses the CFD simulation on the development and dynamic behavior of the central axisymmetric vortex for a medium-head Francis turbine operating at high load conditions. The CFD simulations are based in two-phase transient calculations. Oscillation frequencies against its cavity volume development were obtained and good correlation was found with experimental results.
Facultad de Ingeniería
Materia
Ingeniería Hidráulica
Turbinas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86494

id SEDICI_3c7001395898aa935dda85b43b61b473
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86494
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling High load vortex oscillations developed in Francis turbinesRodríguez, Daniel AmancioRivetti, ArturoLucino, Cecilia VerónicaIngeniería HidráulicaTurbinasFrancis turbines operating at high load conditions produce a typical flow pattern in the draft tube cone characterized by the presence of an axisymmetric central vortex. This central cavity could become unstable, generating synchronic pressure pulsations, usually called self-excited oscillations, which propagate into the whole machine. The on-set and size of the central vortex cavity depend on the geometry of the runner and draft tube and on the operating point as well. Numerical flow simulations and model tests allow for the characterization of the different flow patterns induced by each particular Francis turbine design and, when studied in combination with the hydraulic system, including the intake and penstock, could predict the prototype hydraulic behavior for the complete operation zone. The present work focuses the CFD simulation on the development and dynamic behavior of the central axisymmetric vortex for a medium-head Francis turbine operating at high load conditions. The CFD simulations are based in two-phase transient calculations. Oscillation frequencies against its cavity volume development were obtained and good correlation was found with experimental results.Facultad de Ingeniería2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86494enginfo:eu-repo/semantics/altIdentifier/issn/1755-1307info:eu-repo/semantics/altIdentifier/doi/10.1088/1755-1315/49/8/082006info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:44Zoai:sedici.unlp.edu.ar:10915/86494Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:44.48SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv High load vortex oscillations developed in Francis turbines
title High load vortex oscillations developed in Francis turbines
spellingShingle High load vortex oscillations developed in Francis turbines
Rodríguez, Daniel Amancio
Ingeniería Hidráulica
Turbinas
title_short High load vortex oscillations developed in Francis turbines
title_full High load vortex oscillations developed in Francis turbines
title_fullStr High load vortex oscillations developed in Francis turbines
title_full_unstemmed High load vortex oscillations developed in Francis turbines
title_sort High load vortex oscillations developed in Francis turbines
dc.creator.none.fl_str_mv Rodríguez, Daniel Amancio
Rivetti, Arturo
Lucino, Cecilia Verónica
author Rodríguez, Daniel Amancio
author_facet Rodríguez, Daniel Amancio
Rivetti, Arturo
Lucino, Cecilia Verónica
author_role author
author2 Rivetti, Arturo
Lucino, Cecilia Verónica
author2_role author
author
dc.subject.none.fl_str_mv Ingeniería Hidráulica
Turbinas
topic Ingeniería Hidráulica
Turbinas
dc.description.none.fl_txt_mv Francis turbines operating at high load conditions produce a typical flow pattern in the draft tube cone characterized by the presence of an axisymmetric central vortex. This central cavity could become unstable, generating synchronic pressure pulsations, usually called self-excited oscillations, which propagate into the whole machine. The on-set and size of the central vortex cavity depend on the geometry of the runner and draft tube and on the operating point as well. Numerical flow simulations and model tests allow for the characterization of the different flow patterns induced by each particular Francis turbine design and, when studied in combination with the hydraulic system, including the intake and penstock, could predict the prototype hydraulic behavior for the complete operation zone. The present work focuses the CFD simulation on the development and dynamic behavior of the central axisymmetric vortex for a medium-head Francis turbine operating at high load conditions. The CFD simulations are based in two-phase transient calculations. Oscillation frequencies against its cavity volume development were obtained and good correlation was found with experimental results.
Facultad de Ingeniería
description Francis turbines operating at high load conditions produce a typical flow pattern in the draft tube cone characterized by the presence of an axisymmetric central vortex. This central cavity could become unstable, generating synchronic pressure pulsations, usually called self-excited oscillations, which propagate into the whole machine. The on-set and size of the central vortex cavity depend on the geometry of the runner and draft tube and on the operating point as well. Numerical flow simulations and model tests allow for the characterization of the different flow patterns induced by each particular Francis turbine design and, when studied in combination with the hydraulic system, including the intake and penstock, could predict the prototype hydraulic behavior for the complete operation zone. The present work focuses the CFD simulation on the development and dynamic behavior of the central axisymmetric vortex for a medium-head Francis turbine operating at high load conditions. The CFD simulations are based in two-phase transient calculations. Oscillation frequencies against its cavity volume development were obtained and good correlation was found with experimental results.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86494
url http://sedici.unlp.edu.ar/handle/10915/86494
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1755-1307
info:eu-repo/semantics/altIdentifier/doi/10.1088/1755-1315/49/8/082006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616039920304128
score 13.069144