Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces
- Autores
- Benac, María José; Massey, Pedro Gustavo; Stojanoff, Demetrio
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce extensions of the convex potentials for finite frames (e.g. the frame potential defined by Benedetto and Fickus) in the framework of Bessel sequences of integer translates of finite sequences in L2(Rk). We show that under a natural normalization hypothesis, these convex potentials detect tight frames as their minimizers. We obtain a detailed spectral analysis of the frame operators of shift generated oblique duals of a fixed frame of translates. We use this result to obtain the spectral and geometrical structure of optimal shift generated oblique duals with norm restrictions, that simultaneously minimize every convex potential; we approach this problem by showing that the water-filling construction in probability spaces is optimal with respect to submajorization (within an appropriate set of functions) and by considering a non-commutative version of this construction for measurable fields of positive operators.
Departamento de Matemáticas - Materia
-
Matemática
Ciencias Exactas
Convex potentials
Frames of translates
Majorization
Oblique duality
Shift invariant subspaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/96588
Ver los metadatos del registro completo
id |
SEDICI_3baa3ef6a724e7b354019d98ca6f08cd |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/96588 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant SpacesBenac, María JoséMassey, Pedro GustavoStojanoff, DemetrioMatemáticaCiencias ExactasConvex potentialsFrames of translatesMajorizationOblique dualityShift invariant subspacesWe introduce extensions of the convex potentials for finite frames (e.g. the frame potential defined by Benedetto and Fickus) in the framework of Bessel sequences of integer translates of finite sequences in L2(Rk). We show that under a natural normalization hypothesis, these convex potentials detect tight frames as their minimizers. We obtain a detailed spectral analysis of the frame operators of shift generated oblique duals of a fixed frame of translates. We use this result to obtain the spectral and geometrical structure of optimal shift generated oblique duals with norm restrictions, that simultaneously minimize every convex potential; we approach this problem by showing that the water-filling construction in probability spaces is optimal with respect to submajorization (within an appropriate set of functions) and by considering a non-commutative version of this construction for measurable fields of positive operators.Departamento de Matemáticas2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf401-441http://sedici.unlp.edu.ar/handle/10915/96588enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/66587info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00041-016-9474-xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.01739info:eu-repo/semantics/altIdentifier/issn/1069-5869info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-016-9474-xinfo:eu-repo/semantics/altIdentifier/hdl/11336/66587info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:20Zoai:sedici.unlp.edu.ar:10915/96588Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:21.054SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces |
title |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces |
spellingShingle |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces Benac, María José Matemática Ciencias Exactas Convex potentials Frames of translates Majorization Oblique duality Shift invariant subspaces |
title_short |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces |
title_full |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces |
title_fullStr |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces |
title_full_unstemmed |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces |
title_sort |
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces |
dc.creator.none.fl_str_mv |
Benac, María José Massey, Pedro Gustavo Stojanoff, Demetrio |
author |
Benac, María José |
author_facet |
Benac, María José Massey, Pedro Gustavo Stojanoff, Demetrio |
author_role |
author |
author2 |
Massey, Pedro Gustavo Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Matemática Ciencias Exactas Convex potentials Frames of translates Majorization Oblique duality Shift invariant subspaces |
topic |
Matemática Ciencias Exactas Convex potentials Frames of translates Majorization Oblique duality Shift invariant subspaces |
dc.description.none.fl_txt_mv |
We introduce extensions of the convex potentials for finite frames (e.g. the frame potential defined by Benedetto and Fickus) in the framework of Bessel sequences of integer translates of finite sequences in L2(Rk). We show that under a natural normalization hypothesis, these convex potentials detect tight frames as their minimizers. We obtain a detailed spectral analysis of the frame operators of shift generated oblique duals of a fixed frame of translates. We use this result to obtain the spectral and geometrical structure of optimal shift generated oblique duals with norm restrictions, that simultaneously minimize every convex potential; we approach this problem by showing that the water-filling construction in probability spaces is optimal with respect to submajorization (within an appropriate set of functions) and by considering a non-commutative version of this construction for measurable fields of positive operators. Departamento de Matemáticas |
description |
We introduce extensions of the convex potentials for finite frames (e.g. the frame potential defined by Benedetto and Fickus) in the framework of Bessel sequences of integer translates of finite sequences in L2(Rk). We show that under a natural normalization hypothesis, these convex potentials detect tight frames as their minimizers. We obtain a detailed spectral analysis of the frame operators of shift generated oblique duals of a fixed frame of translates. We use this result to obtain the spectral and geometrical structure of optimal shift generated oblique duals with norm restrictions, that simultaneously minimize every convex potential; we approach this problem by showing that the water-filling construction in probability spaces is optimal with respect to submajorization (within an appropriate set of functions) and by considering a non-commutative version of this construction for measurable fields of positive operators. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/96588 |
url |
http://sedici.unlp.edu.ar/handle/10915/96588 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/66587 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00041-016-9474-x info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.01739 info:eu-repo/semantics/altIdentifier/issn/1069-5869 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-016-9474-x info:eu-repo/semantics/altIdentifier/hdl/11336/66587 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5) |
dc.format.none.fl_str_mv |
application/pdf 401-441 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616077777043456 |
score |
13.070432 |