Limited receptive area neural classifier for texture recognition of metal surfaces
- Autores
- Martín, Anabel; Baidyk, Tatiana; Makeyev, Oleksandr
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The Limited Receptive Area (LIRA) neural classifier is proposed for texture recognition of mechanically treated metal surfaces. It can be used in systems that have to recognize position and orientation of complex work pieces in the task of assembly of micromechanical devices. The performance of the proposed classifier was tested on specially created image database in recognition of four texture types that correspond to metal surfaces after:milling, polishing with sandpaper, turning with lathe and polishing with file. The promising recognition rate of 99.7% was obtained
IFIP International Conference on Artificial Intelligence in Theory and Practice - Machine Vision
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Object recognition
Scene Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23948
Ver los metadatos del registro completo
| id |
SEDICI_3a9150412680cb19c2ab797f37c8057e |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23948 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Limited receptive area neural classifier for texture recognition of metal surfacesMartín, AnabelBaidyk, TatianaMakeyev, OleksandrCiencias InformáticasObject recognitionScene AnalysisThe Limited Receptive Area (LIRA) neural classifier is proposed for texture recognition of mechanically treated metal surfaces. It can be used in systems that have to recognize position and orientation of complex work pieces in the task of assembly of micromechanical devices. The performance of the proposed classifier was tested on specially created image database in recognition of four texture types that correspond to metal surfaces after:milling, polishing with sandpaper, turning with lathe and polishing with file. The promising recognition rate of 99.7% was obtainedIFIP International Conference on Artificial Intelligence in Theory and Practice - Machine VisionRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23948enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:37:13Zoai:sedici.unlp.edu.ar:10915/23948Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:37:14.061SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Limited receptive area neural classifier for texture recognition of metal surfaces |
| title |
Limited receptive area neural classifier for texture recognition of metal surfaces |
| spellingShingle |
Limited receptive area neural classifier for texture recognition of metal surfaces Martín, Anabel Ciencias Informáticas Object recognition Scene Analysis |
| title_short |
Limited receptive area neural classifier for texture recognition of metal surfaces |
| title_full |
Limited receptive area neural classifier for texture recognition of metal surfaces |
| title_fullStr |
Limited receptive area neural classifier for texture recognition of metal surfaces |
| title_full_unstemmed |
Limited receptive area neural classifier for texture recognition of metal surfaces |
| title_sort |
Limited receptive area neural classifier for texture recognition of metal surfaces |
| dc.creator.none.fl_str_mv |
Martín, Anabel Baidyk, Tatiana Makeyev, Oleksandr |
| author |
Martín, Anabel |
| author_facet |
Martín, Anabel Baidyk, Tatiana Makeyev, Oleksandr |
| author_role |
author |
| author2 |
Baidyk, Tatiana Makeyev, Oleksandr |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Object recognition Scene Analysis |
| topic |
Ciencias Informáticas Object recognition Scene Analysis |
| dc.description.none.fl_txt_mv |
The Limited Receptive Area (LIRA) neural classifier is proposed for texture recognition of mechanically treated metal surfaces. It can be used in systems that have to recognize position and orientation of complex work pieces in the task of assembly of micromechanical devices. The performance of the proposed classifier was tested on specially created image database in recognition of four texture types that correspond to metal surfaces after:milling, polishing with sandpaper, turning with lathe and polishing with file. The promising recognition rate of 99.7% was obtained IFIP International Conference on Artificial Intelligence in Theory and Practice - Machine Vision Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
The Limited Receptive Area (LIRA) neural classifier is proposed for texture recognition of mechanically treated metal surfaces. It can be used in systems that have to recognize position and orientation of complex work pieces in the task of assembly of micromechanical devices. The performance of the proposed classifier was tested on specially created image database in recognition of four texture types that correspond to metal surfaces after:milling, polishing with sandpaper, turning with lathe and polishing with file. The promising recognition rate of 99.7% was obtained |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23948 |
| url |
http://sedici.unlp.edu.ar/handle/10915/23948 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782832948543488 |
| score |
12.982451 |