Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds
- Autores
- Murazzo, María Antonia; Rodríguez, Nelson R.; Guevara, Miguel José; Tinetti, Fernando Gustavo
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Almacenar, transferir y procesar grandes volúmenes de datos en el área que se ha denominado Big Data son un factor determinante y un reto para el Cómputo de Alto Rendimiento (sigla en inglés: HPC de High Performance Computing). Los algoritmos usados para procesar esos datos deben sacar provecho de las ventajas ofrecidas por el cómputo en la Nube (Cloud), mediante el uso de algoritmos que permitan agilizar/acelerar el cómputo de o con esos datos. La conjunción de Big Data y HPC se suele enfocar en la paralelización del procesamiento mediante la distribución de los datos y la delegación del cómputo en los nodos de procesamiento de la plataforma. Estas arquitecturas de cómputo, que para el caso de la memoria distribuida eran tradicionalmente los clusters, se pueden migrar al Cloud. La migración permite montar clusters virtuales (Cluster as a Service) logrando un entorno auto-escalable dependiente de la carga de trabajo. Se propone la identificación y evaluación de un conjunto representativo de algoritmos usados en Big Data con énfasis en su implementación en clouds.
Eje: Procesamiento Distribuido y Paralelo
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
cloud computing
big data
cluster computing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/53147
Ver los metadatos del registro completo
id |
SEDICI_39ad78e355075b4d7e0fae75f9cf91ac |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/53147 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en cloudsMurazzo, María AntoniaRodríguez, Nelson R.Guevara, Miguel JoséTinetti, Fernando GustavoCiencias Informáticascloud computingbig datacluster computingAlmacenar, transferir y procesar grandes volúmenes de datos en el área que se ha denominado Big Data son un factor determinante y un reto para el Cómputo de Alto Rendimiento (sigla en inglés: HPC de High Performance Computing). Los algoritmos usados para procesar esos datos deben sacar provecho de las ventajas ofrecidas por el cómputo en la Nube (Cloud), mediante el uso de algoritmos que permitan agilizar/acelerar el cómputo de o con esos datos. La conjunción de Big Data y HPC se suele enfocar en la paralelización del procesamiento mediante la distribución de los datos y la delegación del cómputo en los nodos de procesamiento de la plataforma. Estas arquitecturas de cómputo, que para el caso de la memoria distribuida eran tradicionalmente los clusters, se pueden migrar al Cloud. La migración permite montar clusters virtuales (Cluster as a Service) logrando un entorno auto-escalable dependiente de la carga de trabajo. Se propone la identificación y evaluación de un conjunto representativo de algoritmos usados en Big Data con énfasis en su implementación en clouds.Eje: Procesamiento Distribuido y ParaleloRed de Universidades con Carreras en Informática (RedUNCI)2016-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf767-771http://sedici.unlp.edu.ar/handle/10915/53147spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2info:eu-repo/semantics/reference/hdl/10915/52766info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:37:33Zoai:sedici.unlp.edu.ar:10915/53147Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:37:33.51SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds |
title |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds |
spellingShingle |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds Murazzo, María Antonia Ciencias Informáticas cloud computing big data cluster computing |
title_short |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds |
title_full |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds |
title_fullStr |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds |
title_full_unstemmed |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds |
title_sort |
Identificación de algoritmos de cómputo Intensivo para Big Data y su implementación en clouds |
dc.creator.none.fl_str_mv |
Murazzo, María Antonia Rodríguez, Nelson R. Guevara, Miguel José Tinetti, Fernando Gustavo |
author |
Murazzo, María Antonia |
author_facet |
Murazzo, María Antonia Rodríguez, Nelson R. Guevara, Miguel José Tinetti, Fernando Gustavo |
author_role |
author |
author2 |
Rodríguez, Nelson R. Guevara, Miguel José Tinetti, Fernando Gustavo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas cloud computing big data cluster computing |
topic |
Ciencias Informáticas cloud computing big data cluster computing |
dc.description.none.fl_txt_mv |
Almacenar, transferir y procesar grandes volúmenes de datos en el área que se ha denominado Big Data son un factor determinante y un reto para el Cómputo de Alto Rendimiento (sigla en inglés: HPC de High Performance Computing). Los algoritmos usados para procesar esos datos deben sacar provecho de las ventajas ofrecidas por el cómputo en la Nube (Cloud), mediante el uso de algoritmos que permitan agilizar/acelerar el cómputo de o con esos datos. La conjunción de Big Data y HPC se suele enfocar en la paralelización del procesamiento mediante la distribución de los datos y la delegación del cómputo en los nodos de procesamiento de la plataforma. Estas arquitecturas de cómputo, que para el caso de la memoria distribuida eran tradicionalmente los clusters, se pueden migrar al Cloud. La migración permite montar clusters virtuales (Cluster as a Service) logrando un entorno auto-escalable dependiente de la carga de trabajo. Se propone la identificación y evaluación de un conjunto representativo de algoritmos usados en Big Data con énfasis en su implementación en clouds. Eje: Procesamiento Distribuido y Paralelo Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Almacenar, transferir y procesar grandes volúmenes de datos en el área que se ha denominado Big Data son un factor determinante y un reto para el Cómputo de Alto Rendimiento (sigla en inglés: HPC de High Performance Computing). Los algoritmos usados para procesar esos datos deben sacar provecho de las ventajas ofrecidas por el cómputo en la Nube (Cloud), mediante el uso de algoritmos que permitan agilizar/acelerar el cómputo de o con esos datos. La conjunción de Big Data y HPC se suele enfocar en la paralelización del procesamiento mediante la distribución de los datos y la delegación del cómputo en los nodos de procesamiento de la plataforma. Estas arquitecturas de cómputo, que para el caso de la memoria distribuida eran tradicionalmente los clusters, se pueden migrar al Cloud. La migración permite montar clusters virtuales (Cluster as a Service) logrando un entorno auto-escalable dependiente de la carga de trabajo. Se propone la identificación y evaluación de un conjunto representativo de algoritmos usados en Big Data con énfasis en su implementación en clouds. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/53147 |
url |
http://sedici.unlp.edu.ar/handle/10915/53147 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2 info:eu-repo/semantics/reference/hdl/10915/52766 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 767-771 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260234382344192 |
score |
13.13397 |