Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat
- Autores
- Lavarías, Sabrina María Luisa; Arrighetti, Florencia; Landro, Sonia Maribel; Delevati Colpo, Karine
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this study was to evaluate the effects of the last generation insecticide spirotetramat (STM) on embryos and larvae of the freshwater prawn Macrobrachium borellii. Both embryos and larvae were exposed to serial dilutions of STM to determine the LC₅₀ values. After 96-h of exposure, live larvae were fixed for histological analysis. In addition, ovigerous females were exposed to a sublethal concentration of STM (1.7 mg/L) for 96 h to evaluate the activity of the enzymes catalase, glutathione-S-transferase, and superoxide dismutase as well as the lipoperoxidation (LPO) and protein oxidation levels in embryos. The larvae showed a high sensitivity to STM evidenced by the LC₅₀-96 h value (0.011 mg/L). On the contrary, the embryos were highly resistant to STM exposure, and no lethal effect was observed in the treatments with high concentrations of this insecticide (LC₅₀-96 h > 150 mg/L). Among all the biochemical parameters evaluated in the embryos exposed to STM, only LPO showed a significant increase compared to controls. This was probably due to a restricted entry of the insecticide through the embryonic coat. Thus, a preliminary study of the structure and permeability of the embryonic coat was carried out in control embryos. The analysis by electron microscopy revealed that its structure is formed by four embryonic envelopes composed of multiple layers while the assay with a fluorescent probe revealed that the embryonic coat increases its permeability during development. STM caused significant histopathological alterations in the hepatopancreas and gills of larvae. This study showed that although the embryos of M. borellii could be protected by the embryonic coat, the larvae are very vulnerable to the STM toxicity. So, it is necessary to continue evaluating the effects of these new pesticides on non-target organisms, such as aquacultured species, to help predict their ecotoxicological risks derived from the increasing agricultural activity developed worldwide.
Instituto de Limnología "Dr. Raúl A. Ringuelet" - Materia
-
Ciencias Naturales
aquatic toxicology
histopathology
LC₅₀
oxidative stress
prawn
spirotetramat - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/155695
Ver los metadatos del registro completo
id |
SEDICI_3931d4ee14534814ec65f0028de89b0b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/155695 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramatLavarías, Sabrina María LuisaArrighetti, FlorenciaLandro, Sonia MaribelDelevati Colpo, KarineCiencias Naturalesaquatic toxicologyhistopathologyLC₅₀oxidative stressprawnspirotetramatThe aim of this study was to evaluate the effects of the last generation insecticide spirotetramat (STM) on embryos and larvae of the freshwater prawn Macrobrachium borellii. Both embryos and larvae were exposed to serial dilutions of STM to determine the LC₅₀ values. After 96-h of exposure, live larvae were fixed for histological analysis. In addition, ovigerous females were exposed to a sublethal concentration of STM (1.7 mg/L) for 96 h to evaluate the activity of the enzymes catalase, glutathione-S-transferase, and superoxide dismutase as well as the lipoperoxidation (LPO) and protein oxidation levels in embryos. The larvae showed a high sensitivity to STM evidenced by the LC₅₀-96 h value (0.011 mg/L). On the contrary, the embryos were highly resistant to STM exposure, and no lethal effect was observed in the treatments with high concentrations of this insecticide (LC₅₀-96 h > 150 mg/L). Among all the biochemical parameters evaluated in the embryos exposed to STM, only LPO showed a significant increase compared to controls. This was probably due to a restricted entry of the insecticide through the embryonic coat. Thus, a preliminary study of the structure and permeability of the embryonic coat was carried out in control embryos. The analysis by electron microscopy revealed that its structure is formed by four embryonic envelopes composed of multiple layers while the assay with a fluorescent probe revealed that the embryonic coat increases its permeability during development. STM caused significant histopathological alterations in the hepatopancreas and gills of larvae. This study showed that although the embryos of M. borellii could be protected by the embryonic coat, the larvae are very vulnerable to the STM toxicity. So, it is necessary to continue evaluating the effects of these new pesticides on non-target organisms, such as aquacultured species, to help predict their ecotoxicological risks derived from the increasing agricultural activity developed worldwide.Instituto de Limnología "Dr. Raúl A. Ringuelet"2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/155695enginfo:eu-repo/semantics/altIdentifier/issn/0147-6513info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecoenv.2022.114257info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:12:25Zoai:sedici.unlp.edu.ar:10915/155695Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:12:25.925SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat |
title |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat |
spellingShingle |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat Lavarías, Sabrina María Luisa Ciencias Naturales aquatic toxicology histopathology LC₅₀ oxidative stress prawn spirotetramat |
title_short |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat |
title_full |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat |
title_fullStr |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat |
title_full_unstemmed |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat |
title_sort |
Sensitivity of embryos and larvae of the freshwater prawn Macrobrachium borellii to the latest generation pesticide spirotetramat |
dc.creator.none.fl_str_mv |
Lavarías, Sabrina María Luisa Arrighetti, Florencia Landro, Sonia Maribel Delevati Colpo, Karine |
author |
Lavarías, Sabrina María Luisa |
author_facet |
Lavarías, Sabrina María Luisa Arrighetti, Florencia Landro, Sonia Maribel Delevati Colpo, Karine |
author_role |
author |
author2 |
Arrighetti, Florencia Landro, Sonia Maribel Delevati Colpo, Karine |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Naturales aquatic toxicology histopathology LC₅₀ oxidative stress prawn spirotetramat |
topic |
Ciencias Naturales aquatic toxicology histopathology LC₅₀ oxidative stress prawn spirotetramat |
dc.description.none.fl_txt_mv |
The aim of this study was to evaluate the effects of the last generation insecticide spirotetramat (STM) on embryos and larvae of the freshwater prawn Macrobrachium borellii. Both embryos and larvae were exposed to serial dilutions of STM to determine the LC₅₀ values. After 96-h of exposure, live larvae were fixed for histological analysis. In addition, ovigerous females were exposed to a sublethal concentration of STM (1.7 mg/L) for 96 h to evaluate the activity of the enzymes catalase, glutathione-S-transferase, and superoxide dismutase as well as the lipoperoxidation (LPO) and protein oxidation levels in embryos. The larvae showed a high sensitivity to STM evidenced by the LC₅₀-96 h value (0.011 mg/L). On the contrary, the embryos were highly resistant to STM exposure, and no lethal effect was observed in the treatments with high concentrations of this insecticide (LC₅₀-96 h > 150 mg/L). Among all the biochemical parameters evaluated in the embryos exposed to STM, only LPO showed a significant increase compared to controls. This was probably due to a restricted entry of the insecticide through the embryonic coat. Thus, a preliminary study of the structure and permeability of the embryonic coat was carried out in control embryos. The analysis by electron microscopy revealed that its structure is formed by four embryonic envelopes composed of multiple layers while the assay with a fluorescent probe revealed that the embryonic coat increases its permeability during development. STM caused significant histopathological alterations in the hepatopancreas and gills of larvae. This study showed that although the embryos of M. borellii could be protected by the embryonic coat, the larvae are very vulnerable to the STM toxicity. So, it is necessary to continue evaluating the effects of these new pesticides on non-target organisms, such as aquacultured species, to help predict their ecotoxicological risks derived from the increasing agricultural activity developed worldwide. Instituto de Limnología "Dr. Raúl A. Ringuelet" |
description |
The aim of this study was to evaluate the effects of the last generation insecticide spirotetramat (STM) on embryos and larvae of the freshwater prawn Macrobrachium borellii. Both embryos and larvae were exposed to serial dilutions of STM to determine the LC₅₀ values. After 96-h of exposure, live larvae were fixed for histological analysis. In addition, ovigerous females were exposed to a sublethal concentration of STM (1.7 mg/L) for 96 h to evaluate the activity of the enzymes catalase, glutathione-S-transferase, and superoxide dismutase as well as the lipoperoxidation (LPO) and protein oxidation levels in embryos. The larvae showed a high sensitivity to STM evidenced by the LC₅₀-96 h value (0.011 mg/L). On the contrary, the embryos were highly resistant to STM exposure, and no lethal effect was observed in the treatments with high concentrations of this insecticide (LC₅₀-96 h > 150 mg/L). Among all the biochemical parameters evaluated in the embryos exposed to STM, only LPO showed a significant increase compared to controls. This was probably due to a restricted entry of the insecticide through the embryonic coat. Thus, a preliminary study of the structure and permeability of the embryonic coat was carried out in control embryos. The analysis by electron microscopy revealed that its structure is formed by four embryonic envelopes composed of multiple layers while the assay with a fluorescent probe revealed that the embryonic coat increases its permeability during development. STM caused significant histopathological alterations in the hepatopancreas and gills of larvae. This study showed that although the embryos of M. borellii could be protected by the embryonic coat, the larvae are very vulnerable to the STM toxicity. So, it is necessary to continue evaluating the effects of these new pesticides on non-target organisms, such as aquacultured species, to help predict their ecotoxicological risks derived from the increasing agricultural activity developed worldwide. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/155695 |
url |
http://sedici.unlp.edu.ar/handle/10915/155695 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0147-6513 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecoenv.2022.114257 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260628271529984 |
score |
13.13397 |