Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra
- Autores
- Catania, Aníbal; Catania, Carlos; Sari, Santiago; Fanzone, Martín
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The Harbertson-Adams phenolic parameter assay is a well- known method to measure a panel of phenolic compounds in red wines. However, the multistep analyses required by the method fail at producing results on multiple parameters rapidly. In the present article, we analyze the bene ts of applying a statistical model based on Principal Component Analysis (PCA) and a statistical learning technique denoted as Support Vector Regression Machines (SVR) for correlating sample spectra data to the Harbertson-Adams assay, on each of the phenolics components. The resulting model showed a high correlation between the measured and predicted values for each of the phenolic parameters despite the multicollinearity and high dimensions of the dataset.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Phenolic components
Wine making
Statistical learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/115420
Ver los metadatos del registro completo
id |
SEDICI_37a420e81041ebc163af5e47cdfdfebd |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/115420 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible SpectraCatania, AníbalCatania, CarlosSari, SantiagoFanzone, MartínCiencias InformáticasPhenolic componentsWine makingStatistical learningThe Harbertson-Adams phenolic parameter assay is a well- known method to measure a panel of phenolic compounds in red wines. However, the multistep analyses required by the method fail at producing results on multiple parameters rapidly. In the present article, we analyze the bene ts of applying a statistical model based on Principal Component Analysis (PCA) and a statistical learning technique denoted as Support Vector Regression Machines (SVR) for correlating sample spectra data to the Harbertson-Adams assay, on each of the phenolics components. The resulting model showed a high correlation between the measured and predicted values for each of the phenolic parameters despite the multicollinearity and high dimensions of the dataset.Sociedad Argentina de Informática e Investigación Operativa2020-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf98-101http://sedici.unlp.edu.ar/handle/10915/115420enginfo:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/cai/CAI_14.pdfinfo:eu-repo/semantics/altIdentifier/issn/2525-0949info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:26:50Zoai:sedici.unlp.edu.ar:10915/115420Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:26:50.853SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
title |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
spellingShingle |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra Catania, Aníbal Ciencias Informáticas Phenolic components Wine making Statistical learning |
title_short |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
title_full |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
title_fullStr |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
title_full_unstemmed |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
title_sort |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
dc.creator.none.fl_str_mv |
Catania, Aníbal Catania, Carlos Sari, Santiago Fanzone, Martín |
author |
Catania, Aníbal |
author_facet |
Catania, Aníbal Catania, Carlos Sari, Santiago Fanzone, Martín |
author_role |
author |
author2 |
Catania, Carlos Sari, Santiago Fanzone, Martín |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Phenolic components Wine making Statistical learning |
topic |
Ciencias Informáticas Phenolic components Wine making Statistical learning |
dc.description.none.fl_txt_mv |
The Harbertson-Adams phenolic parameter assay is a well- known method to measure a panel of phenolic compounds in red wines. However, the multistep analyses required by the method fail at producing results on multiple parameters rapidly. In the present article, we analyze the bene ts of applying a statistical model based on Principal Component Analysis (PCA) and a statistical learning technique denoted as Support Vector Regression Machines (SVR) for correlating sample spectra data to the Harbertson-Adams assay, on each of the phenolics components. The resulting model showed a high correlation between the measured and predicted values for each of the phenolic parameters despite the multicollinearity and high dimensions of the dataset. Sociedad Argentina de Informática e Investigación Operativa |
description |
The Harbertson-Adams phenolic parameter assay is a well- known method to measure a panel of phenolic compounds in red wines. However, the multistep analyses required by the method fail at producing results on multiple parameters rapidly. In the present article, we analyze the bene ts of applying a statistical model based on Principal Component Analysis (PCA) and a statistical learning technique denoted as Support Vector Regression Machines (SVR) for correlating sample spectra data to the Harbertson-Adams assay, on each of the phenolics components. The resulting model showed a high correlation between the measured and predicted values for each of the phenolic parameters despite the multicollinearity and high dimensions of the dataset. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/115420 |
url |
http://sedici.unlp.edu.ar/handle/10915/115420 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/cai/CAI_14.pdf info:eu-repo/semantics/altIdentifier/issn/2525-0949 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 98-101 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616146791170048 |
score |
13.070432 |