Chaos in elliptical galaxies

Autores
Muzzio, Juan Carlos
Año de publicación
2011
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Here I present a review of the work done on the presence and effects of chaos in elliptical galaxies plus some recent results we obtained on this subject. The fact that important fractions of the orbits that arise in potentials adequate to represent elliptical galaxies are chaotic is nowadays undeniable. Alternatively, it has been difficult to build selfconsistent models of elliptical galaxies that include significant fractions of chaotic orbits and, at the same time, are stable. That is specially true for cuspy models of elliptical galaxies which seem to best represent real galaxies. I argue here that there is no physical impediment to build such models and that the difficulty lies in the method of Schwarzschild, widely used to obtain such models. Actually, I show that there is no problem in obtaining selfconsistent models of elliptical galaxies, even cuspy ones, that contain very high fractions of chaotic orbits and are, nevertheless, highly stable over time intervals of the order of a Hubble time.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
elliptical galaxies
chaos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/167638

id SEDICI_3768bf404784b74c9670766a2e327d9c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/167638
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Chaos in elliptical galaxiesMuzzio, Juan CarlosCiencias Astronómicaselliptical galaxieschaosHere I present a review of the work done on the presence and effects of chaos in elliptical galaxies plus some recent results we obtained on this subject. The fact that important fractions of the orbits that arise in potentials adequate to represent elliptical galaxies are chaotic is nowadays undeniable. Alternatively, it has been difficult to build selfconsistent models of elliptical galaxies that include significant fractions of chaotic orbits and, at the same time, are stable. That is specially true for cuspy models of elliptical galaxies which seem to best represent real galaxies. I argue here that there is no physical impediment to build such models and that the difficulty lies in the method of Schwarzschild, widely used to obtain such models. Actually, I show that there is no problem in obtaining selfconsistent models of elliptical galaxies, even cuspy ones, that contain very high fractions of chaotic orbits and are, nevertheless, highly stable over time intervals of the order of a Hubble time.Facultad de Ciencias Astronómicas y Geofísicas2011-07info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf263-275http://sedici.unlp.edu.ar/handle/10915/167638enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:44:40Zoai:sedici.unlp.edu.ar:10915/167638Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:44:40.807SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Chaos in elliptical galaxies
title Chaos in elliptical galaxies
spellingShingle Chaos in elliptical galaxies
Muzzio, Juan Carlos
Ciencias Astronómicas
elliptical galaxies
chaos
title_short Chaos in elliptical galaxies
title_full Chaos in elliptical galaxies
title_fullStr Chaos in elliptical galaxies
title_full_unstemmed Chaos in elliptical galaxies
title_sort Chaos in elliptical galaxies
dc.creator.none.fl_str_mv Muzzio, Juan Carlos
author Muzzio, Juan Carlos
author_facet Muzzio, Juan Carlos
author_role author
dc.subject.none.fl_str_mv Ciencias Astronómicas
elliptical galaxies
chaos
topic Ciencias Astronómicas
elliptical galaxies
chaos
dc.description.none.fl_txt_mv Here I present a review of the work done on the presence and effects of chaos in elliptical galaxies plus some recent results we obtained on this subject. The fact that important fractions of the orbits that arise in potentials adequate to represent elliptical galaxies are chaotic is nowadays undeniable. Alternatively, it has been difficult to build selfconsistent models of elliptical galaxies that include significant fractions of chaotic orbits and, at the same time, are stable. That is specially true for cuspy models of elliptical galaxies which seem to best represent real galaxies. I argue here that there is no physical impediment to build such models and that the difficulty lies in the method of Schwarzschild, widely used to obtain such models. Actually, I show that there is no problem in obtaining selfconsistent models of elliptical galaxies, even cuspy ones, that contain very high fractions of chaotic orbits and are, nevertheless, highly stable over time intervals of the order of a Hubble time.
Facultad de Ciencias Astronómicas y Geofísicas
description Here I present a review of the work done on the presence and effects of chaos in elliptical galaxies plus some recent results we obtained on this subject. The fact that important fractions of the orbits that arise in potentials adequate to represent elliptical galaxies are chaotic is nowadays undeniable. Alternatively, it has been difficult to build selfconsistent models of elliptical galaxies that include significant fractions of chaotic orbits and, at the same time, are stable. That is specially true for cuspy models of elliptical galaxies which seem to best represent real galaxies. I argue here that there is no physical impediment to build such models and that the difficulty lies in the method of Schwarzschild, widely used to obtain such models. Actually, I show that there is no problem in obtaining selfconsistent models of elliptical galaxies, even cuspy ones, that contain very high fractions of chaotic orbits and are, nevertheless, highly stable over time intervals of the order of a Hubble time.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/167638
url http://sedici.unlp.edu.ar/handle/10915/167638
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
263-275
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616313573474304
score 13.070432