A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus

Autores
Ortiz, J. L.; Cikota, A.; Cikota, S.; Hestroffer, D.; Thirouin, A.; Morales, N.; Duffard, R.; Gil-Hutton, Ricardo; Santos Sanz, P.; Cueva, I. de la
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
From time series CCD observations of a fixed and large star field that contained the binary trans-Neptunian object (90482) Orcus (formerly 2004 DW), taken during a period of 33 days, we have been able to derive high-precision relative astrometry and photometry of the Orcus system with respect to background stars. The right ascension residuals of an orbital fit to the astrometric data revealed a periodicity of 9.7 ± 0.3 days, which is what one would expect to be induced by the known Orcus companion (Vanth). The residuals are also correlated with the theoretical positions of the satellite with regard to the primary. We therefore have revealed the presence of Orcus’ satellite in our astrometric measurements, although the residuals in declination did not show the expected variations. The oscillation in the residuals is caused by the photocenter motion of the combined Orcus plus satellite system around the barycenter along an orbital revolution of the satellite. The photocenter motion is much larger than the motion of Orcus around the barycenter, and we show here that detecting some binaries through a carefully devised astrometric technique might be feasible with telescopes of moderate size. We discuss the prospects for using the technique to find new binary trans-Neptunian objects (TNOs) and to study already known binary systems with uncertain orbital periods. We also analyzed the system’s mid-term photometry in order to determine whether the rotation could be tidally locked to the satellite’s orbital period. We found that a photometric variability of 9.7 ± 0.3 days is clear in our data, and is nearly coincident with the orbital period of the satellite. We believe this variability might be induced by the satellite’s rotation. In our photometry there is also a slight hint for an additional very small variability in the 10 h range that was already reported in the literature. This short-term variability would indicate that the primary is not tidally locked and therefore the system would not have reached a double synchronous state. Implications for the basic physical properties of the primary and its satellite are discussed. From angular momentum considerations we suspect that the Orcus satellite might have formed from a rotational fission. This requires that the mass of the satellite would be around 0.09 times that of the primary, close to the value that one derives by using an albedo of 0.12 for the satellite and assuming equal densities for both the primary and secondary.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Astronomía
Kuiper belt objects: individual: (90482) Orcus
Kuiper belt: general
minor planets, asteroids: general
astrometry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/101535

id SEDICI_3734b6052c418a59ab6d6a61d0cfd883
oai_identifier_str oai:sedici.unlp.edu.ar:10915/101535
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A mid-term astrometric and photometric study of trans-Neptunian object (90482) OrcusOrtiz, J. L.Cikota, A.Cikota, S.Hestroffer, D.Thirouin, A.Morales, N.Duffard, R.Gil-Hutton, RicardoSantos Sanz, P.Cueva, I. de laAstronomíaKuiper belt objects: individual: (90482) OrcusKuiper belt: generalminor planets, asteroids: generalastrometryFrom time series CCD observations of a fixed and large star field that contained the binary trans-Neptunian object (90482) Orcus (formerly 2004 DW), taken during a period of 33 days, we have been able to derive high-precision relative astrometry and photometry of the Orcus system with respect to background stars. The right ascension residuals of an orbital fit to the astrometric data revealed a periodicity of 9.7 ± 0.3 days, which is what one would expect to be induced by the known Orcus companion (Vanth). The residuals are also correlated with the theoretical positions of the satellite with regard to the primary. We therefore have revealed the presence of Orcus’ satellite in our astrometric measurements, although the residuals in declination did not show the expected variations. The oscillation in the residuals is caused by the photocenter motion of the combined Orcus plus satellite system around the barycenter along an orbital revolution of the satellite. The photocenter motion is much larger than the motion of Orcus around the barycenter, and we show here that detecting some binaries through a carefully devised astrometric technique might be feasible with telescopes of moderate size. We discuss the prospects for using the technique to find new binary trans-Neptunian objects (TNOs) and to study already known binary systems with uncertain orbital periods. We also analyzed the system’s mid-term photometry in order to determine whether the rotation could be tidally locked to the satellite’s orbital period. We found that a photometric variability of 9.7 ± 0.3 days is clear in our data, and is nearly coincident with the orbital period of the satellite. We believe this variability might be induced by the satellite’s rotation. In our photometry there is also a slight hint for an additional very small variability in the 10 h range that was already reported in the literature. This short-term variability would indicate that the primary is not tidally locked and therefore the system would not have reached a double synchronous state. Implications for the basic physical properties of the primary and its satellite are discussed. From angular momentum considerations we suspect that the Orcus satellite might have formed from a rotational fission. This requires that the mass of the satellite would be around 0.09 times that of the primary, close to the value that one derives by using an albedo of 0.12 for the satellite and assuming equal densities for both the primary and secondary.Facultad de Ciencias Astronómicas y Geofísicas2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/101535enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/29461info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2011/01/aa15309-10/aa15309-10.htmlinfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201015309info:eu-repo/semantics/altIdentifier/hdl/11336/29461info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:23:39Zoai:sedici.unlp.edu.ar:10915/101535Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:23:39.911SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus
title A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus
spellingShingle A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus
Ortiz, J. L.
Astronomía
Kuiper belt objects: individual: (90482) Orcus
Kuiper belt: general
minor planets, asteroids: general
astrometry
title_short A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus
title_full A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus
title_fullStr A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus
title_full_unstemmed A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus
title_sort A mid-term astrometric and photometric study of trans-Neptunian object (90482) Orcus
dc.creator.none.fl_str_mv Ortiz, J. L.
Cikota, A.
Cikota, S.
Hestroffer, D.
Thirouin, A.
Morales, N.
Duffard, R.
Gil-Hutton, Ricardo
Santos Sanz, P.
Cueva, I. de la
author Ortiz, J. L.
author_facet Ortiz, J. L.
Cikota, A.
Cikota, S.
Hestroffer, D.
Thirouin, A.
Morales, N.
Duffard, R.
Gil-Hutton, Ricardo
Santos Sanz, P.
Cueva, I. de la
author_role author
author2 Cikota, A.
Cikota, S.
Hestroffer, D.
Thirouin, A.
Morales, N.
Duffard, R.
Gil-Hutton, Ricardo
Santos Sanz, P.
Cueva, I. de la
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Astronomía
Kuiper belt objects: individual: (90482) Orcus
Kuiper belt: general
minor planets, asteroids: general
astrometry
topic Astronomía
Kuiper belt objects: individual: (90482) Orcus
Kuiper belt: general
minor planets, asteroids: general
astrometry
dc.description.none.fl_txt_mv From time series CCD observations of a fixed and large star field that contained the binary trans-Neptunian object (90482) Orcus (formerly 2004 DW), taken during a period of 33 days, we have been able to derive high-precision relative astrometry and photometry of the Orcus system with respect to background stars. The right ascension residuals of an orbital fit to the astrometric data revealed a periodicity of 9.7 ± 0.3 days, which is what one would expect to be induced by the known Orcus companion (Vanth). The residuals are also correlated with the theoretical positions of the satellite with regard to the primary. We therefore have revealed the presence of Orcus’ satellite in our astrometric measurements, although the residuals in declination did not show the expected variations. The oscillation in the residuals is caused by the photocenter motion of the combined Orcus plus satellite system around the barycenter along an orbital revolution of the satellite. The photocenter motion is much larger than the motion of Orcus around the barycenter, and we show here that detecting some binaries through a carefully devised astrometric technique might be feasible with telescopes of moderate size. We discuss the prospects for using the technique to find new binary trans-Neptunian objects (TNOs) and to study already known binary systems with uncertain orbital periods. We also analyzed the system’s mid-term photometry in order to determine whether the rotation could be tidally locked to the satellite’s orbital period. We found that a photometric variability of 9.7 ± 0.3 days is clear in our data, and is nearly coincident with the orbital period of the satellite. We believe this variability might be induced by the satellite’s rotation. In our photometry there is also a slight hint for an additional very small variability in the 10 h range that was already reported in the literature. This short-term variability would indicate that the primary is not tidally locked and therefore the system would not have reached a double synchronous state. Implications for the basic physical properties of the primary and its satellite are discussed. From angular momentum considerations we suspect that the Orcus satellite might have formed from a rotational fission. This requires that the mass of the satellite would be around 0.09 times that of the primary, close to the value that one derives by using an albedo of 0.12 for the satellite and assuming equal densities for both the primary and secondary.
Facultad de Ciencias Astronómicas y Geofísicas
description From time series CCD observations of a fixed and large star field that contained the binary trans-Neptunian object (90482) Orcus (formerly 2004 DW), taken during a period of 33 days, we have been able to derive high-precision relative astrometry and photometry of the Orcus system with respect to background stars. The right ascension residuals of an orbital fit to the astrometric data revealed a periodicity of 9.7 ± 0.3 days, which is what one would expect to be induced by the known Orcus companion (Vanth). The residuals are also correlated with the theoretical positions of the satellite with regard to the primary. We therefore have revealed the presence of Orcus’ satellite in our astrometric measurements, although the residuals in declination did not show the expected variations. The oscillation in the residuals is caused by the photocenter motion of the combined Orcus plus satellite system around the barycenter along an orbital revolution of the satellite. The photocenter motion is much larger than the motion of Orcus around the barycenter, and we show here that detecting some binaries through a carefully devised astrometric technique might be feasible with telescopes of moderate size. We discuss the prospects for using the technique to find new binary trans-Neptunian objects (TNOs) and to study already known binary systems with uncertain orbital periods. We also analyzed the system’s mid-term photometry in order to determine whether the rotation could be tidally locked to the satellite’s orbital period. We found that a photometric variability of 9.7 ± 0.3 days is clear in our data, and is nearly coincident with the orbital period of the satellite. We believe this variability might be induced by the satellite’s rotation. In our photometry there is also a slight hint for an additional very small variability in the 10 h range that was already reported in the literature. This short-term variability would indicate that the primary is not tidally locked and therefore the system would not have reached a double synchronous state. Implications for the basic physical properties of the primary and its satellite are discussed. From angular momentum considerations we suspect that the Orcus satellite might have formed from a rotational fission. This requires that the mass of the satellite would be around 0.09 times that of the primary, close to the value that one derives by using an albedo of 0.12 for the satellite and assuming equal densities for both the primary and secondary.
publishDate 2010
dc.date.none.fl_str_mv 2010-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/101535
url http://sedici.unlp.edu.ar/handle/10915/101535
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/29461
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2011/01/aa15309-10/aa15309-10.html
info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201015309
info:eu-repo/semantics/altIdentifier/hdl/11336/29461
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904265600794624
score 12.993085