On improved deformable template matching for polygonal objects

Autores
Luo, Jianshu; Tang, Zeying; Lu, Hanqing
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, an improvement of deformable template matching algorithm for polygonal objects in grayscale images using two-dimensional deformable templates along orthogonal curves is presented. In the process of pre-computing extensions of the deformable template along orthogonal curves, the novel matching approach incorporates adapting knowledge-specific template discretization techniques appropriate for different polygonal objects and minimizing the improved internal and external energy terms containing inter-shape information of polygonal objects. In our application, this energy optimization problem of the deformable template is efficiently solved by a genetic algorithm (GA). Our algorithm has been successfully applied on synthetic images and real images. The experiment results show that the new approach provides more robust and accurate matching method.
Facultad de Informática
Materia
Ciencias Informáticas
genetic algorithm
orthogonal curve
deformable template; orthogonal curve; polygonal object; matching; genetic algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9475

id SEDICI_371c44a375fcec7cb7f9111423b0c357
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9475
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On improved deformable template matching for polygonal objectsLuo, JianshuTang, ZeyingLu, HanqingCiencias Informáticasgenetic algorithmorthogonal curvedeformable template; orthogonal curve; polygonal object; matching; genetic algorithmIn this paper, an improvement of deformable template matching algorithm for polygonal objects in grayscale images using two-dimensional deformable templates along orthogonal curves is presented. In the process of pre-computing extensions of the deformable template along orthogonal curves, the novel matching approach incorporates adapting knowledge-specific template discretization techniques appropriate for different polygonal objects and minimizing the improved internal and external energy terms containing inter-shape information of polygonal objects. In our application, this energy optimization problem of the deformable template is efficiently solved by a genetic algorithm (GA). Our algorithm has been successfully applied on synthetic images and real images. The experiment results show that the new approach provides more robust and accurate matching method.Facultad de Informática2004-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf20-25http://sedici.unlp.edu.ar/handle/10915/9475enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr04-3.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:23:30Zoai:sedici.unlp.edu.ar:10915/9475Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:23:30.922SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On improved deformable template matching for polygonal objects
title On improved deformable template matching for polygonal objects
spellingShingle On improved deformable template matching for polygonal objects
Luo, Jianshu
Ciencias Informáticas
genetic algorithm
orthogonal curve
deformable template; orthogonal curve; polygonal object; matching; genetic algorithm
title_short On improved deformable template matching for polygonal objects
title_full On improved deformable template matching for polygonal objects
title_fullStr On improved deformable template matching for polygonal objects
title_full_unstemmed On improved deformable template matching for polygonal objects
title_sort On improved deformable template matching for polygonal objects
dc.creator.none.fl_str_mv Luo, Jianshu
Tang, Zeying
Lu, Hanqing
author Luo, Jianshu
author_facet Luo, Jianshu
Tang, Zeying
Lu, Hanqing
author_role author
author2 Tang, Zeying
Lu, Hanqing
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
genetic algorithm
orthogonal curve
deformable template; orthogonal curve; polygonal object; matching; genetic algorithm
topic Ciencias Informáticas
genetic algorithm
orthogonal curve
deformable template; orthogonal curve; polygonal object; matching; genetic algorithm
dc.description.none.fl_txt_mv In this paper, an improvement of deformable template matching algorithm for polygonal objects in grayscale images using two-dimensional deformable templates along orthogonal curves is presented. In the process of pre-computing extensions of the deformable template along orthogonal curves, the novel matching approach incorporates adapting knowledge-specific template discretization techniques appropriate for different polygonal objects and minimizing the improved internal and external energy terms containing inter-shape information of polygonal objects. In our application, this energy optimization problem of the deformable template is efficiently solved by a genetic algorithm (GA). Our algorithm has been successfully applied on synthetic images and real images. The experiment results show that the new approach provides more robust and accurate matching method.
Facultad de Informática
description In this paper, an improvement of deformable template matching algorithm for polygonal objects in grayscale images using two-dimensional deformable templates along orthogonal curves is presented. In the process of pre-computing extensions of the deformable template along orthogonal curves, the novel matching approach incorporates adapting knowledge-specific template discretization techniques appropriate for different polygonal objects and minimizing the improved internal and external energy terms containing inter-shape information of polygonal objects. In our application, this energy optimization problem of the deformable template is efficiently solved by a genetic algorithm (GA). Our algorithm has been successfully applied on synthetic images and real images. The experiment results show that the new approach provides more robust and accurate matching method.
publishDate 2004
dc.date.none.fl_str_mv 2004-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9475
url http://sedici.unlp.edu.ar/handle/10915/9475
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr04-3.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
20-25
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260060430925824
score 13.13397