On improved deformable template matching for polygonal objects
- Autores
- Luo, Jianshu; Tang, Zeying; Lu, Hanqing
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, an improvement of deformable template matching algorithm for polygonal objects in grayscale images using two-dimensional deformable templates along orthogonal curves is presented. In the process of pre-computing extensions of the deformable template along orthogonal curves, the novel matching approach incorporates adapting knowledge-specific template discretization techniques appropriate for different polygonal objects and minimizing the improved internal and external energy terms containing inter-shape information of polygonal objects. In our application, this energy optimization problem of the deformable template is efficiently solved by a genetic algorithm (GA). Our algorithm has been successfully applied on synthetic images and real images. The experiment results show that the new approach provides more robust and accurate matching method.
Facultad de Informática - Materia
-
Ciencias Informáticas
genetic algorithm
orthogonal curve
deformable template; orthogonal curve; polygonal object; matching; genetic algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9475
Ver los metadatos del registro completo
id |
SEDICI_371c44a375fcec7cb7f9111423b0c357 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9475 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On improved deformable template matching for polygonal objectsLuo, JianshuTang, ZeyingLu, HanqingCiencias Informáticasgenetic algorithmorthogonal curvedeformable template; orthogonal curve; polygonal object; matching; genetic algorithmIn this paper, an improvement of deformable template matching algorithm for polygonal objects in grayscale images using two-dimensional deformable templates along orthogonal curves is presented. In the process of pre-computing extensions of the deformable template along orthogonal curves, the novel matching approach incorporates adapting knowledge-specific template discretization techniques appropriate for different polygonal objects and minimizing the improved internal and external energy terms containing inter-shape information of polygonal objects. In our application, this energy optimization problem of the deformable template is efficiently solved by a genetic algorithm (GA). Our algorithm has been successfully applied on synthetic images and real images. The experiment results show that the new approach provides more robust and accurate matching method.Facultad de Informática2004-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf20-25http://sedici.unlp.edu.ar/handle/10915/9475enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr04-3.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:23:30Zoai:sedici.unlp.edu.ar:10915/9475Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:23:30.922SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On improved deformable template matching for polygonal objects |
title |
On improved deformable template matching for polygonal objects |
spellingShingle |
On improved deformable template matching for polygonal objects Luo, Jianshu Ciencias Informáticas genetic algorithm orthogonal curve deformable template; orthogonal curve; polygonal object; matching; genetic algorithm |
title_short |
On improved deformable template matching for polygonal objects |
title_full |
On improved deformable template matching for polygonal objects |
title_fullStr |
On improved deformable template matching for polygonal objects |
title_full_unstemmed |
On improved deformable template matching for polygonal objects |
title_sort |
On improved deformable template matching for polygonal objects |
dc.creator.none.fl_str_mv |
Luo, Jianshu Tang, Zeying Lu, Hanqing |
author |
Luo, Jianshu |
author_facet |
Luo, Jianshu Tang, Zeying Lu, Hanqing |
author_role |
author |
author2 |
Tang, Zeying Lu, Hanqing |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas genetic algorithm orthogonal curve deformable template; orthogonal curve; polygonal object; matching; genetic algorithm |
topic |
Ciencias Informáticas genetic algorithm orthogonal curve deformable template; orthogonal curve; polygonal object; matching; genetic algorithm |
dc.description.none.fl_txt_mv |
In this paper, an improvement of deformable template matching algorithm for polygonal objects in grayscale images using two-dimensional deformable templates along orthogonal curves is presented. In the process of pre-computing extensions of the deformable template along orthogonal curves, the novel matching approach incorporates adapting knowledge-specific template discretization techniques appropriate for different polygonal objects and minimizing the improved internal and external energy terms containing inter-shape information of polygonal objects. In our application, this energy optimization problem of the deformable template is efficiently solved by a genetic algorithm (GA). Our algorithm has been successfully applied on synthetic images and real images. The experiment results show that the new approach provides more robust and accurate matching method. Facultad de Informática |
description |
In this paper, an improvement of deformable template matching algorithm for polygonal objects in grayscale images using two-dimensional deformable templates along orthogonal curves is presented. In the process of pre-computing extensions of the deformable template along orthogonal curves, the novel matching approach incorporates adapting knowledge-specific template discretization techniques appropriate for different polygonal objects and minimizing the improved internal and external energy terms containing inter-shape information of polygonal objects. In our application, this energy optimization problem of the deformable template is efficiently solved by a genetic algorithm (GA). Our algorithm has been successfully applied on synthetic images and real images. The experiment results show that the new approach provides more robust and accurate matching method. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9475 |
url |
http://sedici.unlp.edu.ar/handle/10915/9475 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr04-3.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 20-25 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260060430925824 |
score |
13.13397 |