Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study

Autores
Medina Chanduví, Hugo Harold; Mudarra Navarro, Azucena Marisol; Bilovol, Vitaliy; Errico, Leonardo Antonio; Gil Rebaza, Arles Víctor
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ab initio electronic structure calculations were performed to study the effect of V-doping on the structural, electronic, and magnetic properties of tin dioxide (Sn₁₋ₓVₓO₂, x: 0.042−0.125). Calculations have been performed using pseudopotentials and plane-wave and full potential linearized augmented plane-wave methods. State-of-the-art Heyd−Scuseria−Ernzerhof (HSE06) exchange−correlation hybrid functional and the Tran−Blaha-modified Becke−Johnson (TB-mBJ) exchange potential were employed. Our calculations showed that V⁴⁺ substitutionally replaces Sn⁴⁺ ions inducing a reduction of the volume cell of SnO₂ and shortening of the metal−oxygen nearest neighbor bond lengths. Spin polarization at the V sites is predicted. Our results indicate that the magnetic ground state of the resulting system is paramagnetic. TB-mBJ and HSE06 accurately describe the experimentally reported dependence of the band gap with x. Our theoretical results for the hyperfine parameters at the Sn sites are in excellent agreement with Mössbauer experiments. Hyperfine parameters at the V sites are also presented.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Física
Química
chemical calculations
electrical conductivity
energy
impurities
oxidation state
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/162186

id SEDICI_36de5eb04b50d92bb101078e875ee33e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/162186
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based StudyMedina Chanduví, Hugo HaroldMudarra Navarro, Azucena MarisolBilovol, VitaliyErrico, Leonardo AntonioGil Rebaza, Arles VíctorFísicaQuímicachemical calculationselectrical conductivityenergyimpuritiesoxidation stateAb initio electronic structure calculations were performed to study the effect of V-doping on the structural, electronic, and magnetic properties of tin dioxide (Sn₁₋ₓVₓO₂, x: 0.042−0.125). Calculations have been performed using pseudopotentials and plane-wave and full potential linearized augmented plane-wave methods. State-of-the-art Heyd−Scuseria−Ernzerhof (HSE06) exchange−correlation hybrid functional and the Tran−Blaha-modified Becke−Johnson (TB-mBJ) exchange potential were employed. Our calculations showed that V⁴⁺ substitutionally replaces Sn⁴⁺ ions inducing a reduction of the volume cell of SnO₂ and shortening of the metal−oxygen nearest neighbor bond lengths. Spin polarization at the V sites is predicted. Our results indicate that the magnetic ground state of the resulting system is paramagnetic. TB-mBJ and HSE06 accurately describe the experimentally reported dependence of the band gap with x. Our theoretical results for the hyperfine parameters at the Sn sites are in excellent agreement with Mössbauer experiments. Hyperfine parameters at the V sites are also presented.Facultad de Ciencias ExactasInstituto de Física La Plata2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf11702-11713http://sedici.unlp.edu.ar/handle/10915/162186enginfo:eu-repo/semantics/altIdentifier/issn/1932-7447info:eu-repo/semantics/altIdentifier/issn/1932-7455info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.1c02285info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T11:06:58Zoai:sedici.unlp.edu.ar:10915/162186Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 11:06:59.077SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study
title Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study
spellingShingle Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study
Medina Chanduví, Hugo Harold
Física
Química
chemical calculations
electrical conductivity
energy
impurities
oxidation state
title_short Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study
title_full Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study
title_fullStr Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study
title_full_unstemmed Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study
title_sort Structural, Electronic, Magnetic, and Hyperfine Properties of V‑doped SnO₂ (Sn₁₋ₓVₓO₂, x: 0, 0.042, 0.084, and 0.125) : A DFT-Based Study
dc.creator.none.fl_str_mv Medina Chanduví, Hugo Harold
Mudarra Navarro, Azucena Marisol
Bilovol, Vitaliy
Errico, Leonardo Antonio
Gil Rebaza, Arles Víctor
author Medina Chanduví, Hugo Harold
author_facet Medina Chanduví, Hugo Harold
Mudarra Navarro, Azucena Marisol
Bilovol, Vitaliy
Errico, Leonardo Antonio
Gil Rebaza, Arles Víctor
author_role author
author2 Mudarra Navarro, Azucena Marisol
Bilovol, Vitaliy
Errico, Leonardo Antonio
Gil Rebaza, Arles Víctor
author2_role author
author
author
author
dc.subject.none.fl_str_mv Física
Química
chemical calculations
electrical conductivity
energy
impurities
oxidation state
topic Física
Química
chemical calculations
electrical conductivity
energy
impurities
oxidation state
dc.description.none.fl_txt_mv Ab initio electronic structure calculations were performed to study the effect of V-doping on the structural, electronic, and magnetic properties of tin dioxide (Sn₁₋ₓVₓO₂, x: 0.042−0.125). Calculations have been performed using pseudopotentials and plane-wave and full potential linearized augmented plane-wave methods. State-of-the-art Heyd−Scuseria−Ernzerhof (HSE06) exchange−correlation hybrid functional and the Tran−Blaha-modified Becke−Johnson (TB-mBJ) exchange potential were employed. Our calculations showed that V⁴⁺ substitutionally replaces Sn⁴⁺ ions inducing a reduction of the volume cell of SnO₂ and shortening of the metal−oxygen nearest neighbor bond lengths. Spin polarization at the V sites is predicted. Our results indicate that the magnetic ground state of the resulting system is paramagnetic. TB-mBJ and HSE06 accurately describe the experimentally reported dependence of the band gap with x. Our theoretical results for the hyperfine parameters at the Sn sites are in excellent agreement with Mössbauer experiments. Hyperfine parameters at the V sites are also presented.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description Ab initio electronic structure calculations were performed to study the effect of V-doping on the structural, electronic, and magnetic properties of tin dioxide (Sn₁₋ₓVₓO₂, x: 0.042−0.125). Calculations have been performed using pseudopotentials and plane-wave and full potential linearized augmented plane-wave methods. State-of-the-art Heyd−Scuseria−Ernzerhof (HSE06) exchange−correlation hybrid functional and the Tran−Blaha-modified Becke−Johnson (TB-mBJ) exchange potential were employed. Our calculations showed that V⁴⁺ substitutionally replaces Sn⁴⁺ ions inducing a reduction of the volume cell of SnO₂ and shortening of the metal−oxygen nearest neighbor bond lengths. Spin polarization at the V sites is predicted. Our results indicate that the magnetic ground state of the resulting system is paramagnetic. TB-mBJ and HSE06 accurately describe the experimentally reported dependence of the band gap with x. Our theoretical results for the hyperfine parameters at the Sn sites are in excellent agreement with Mössbauer experiments. Hyperfine parameters at the V sites are also presented.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/162186
url http://sedici.unlp.edu.ar/handle/10915/162186
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1932-7447
info:eu-repo/semantics/altIdentifier/issn/1932-7455
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.1c02285
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
11702-11713
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1848605782119022592
score 12.976206