Redox regulation of sarcoplasmic reticulum calcium cycling in the heart

Autores
Donoso, Paulina; Sánchez, Gina
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The coordinated release and reuptake of calcium into the sarcoplasmic reticulum (SR) is critical to maintain an adequate heart function. Reactive oxygen species (ROS) and reactive nitrogen species (RNS), generated in the heart under normal basal condition, modulate the function of different proteins via the reversible oxidation of critical cysteine residues. Excess ROS/RNS generation has been shown to impair heart function, but extensive evidence indicates that the controlled production of these molecules increases cardiac contractility by targeting SR calcium proteins. Ryanodine receptors (RyR2) are endogenously S-nitrosylated and S-glutathionylated and both redox modifications increase the activity of these channels in vitro. Moreover, exercise or rapid pacing increases the RyR2 S-glutathionylation, a modification that depends on the activation of NADPH oxidase (NOX2). In isolated cardiomyocytes, this enzyme is rapidly activated by stretch, generating an immediate burst of ROS which increases calcium release by RyR2. Nitroxyl, a particular ROS/RNS, increases cardiac inotropy in vivo, by targeting critical thiols in RyR2, the SR Ca2+-ATPase and phospholamban, allowing the simultaneous increase in calcium release and reuptake, required to produce a sustained increase in the calcium transient. In this minireview we present some of the recent work on the redox regulation of SR calcium cycling proteins.
Sociedad Argentina de Fisiología
Materia
Ciencias Médicas
calcium cycling
sarcoplasmic reticulum
reactive oxygen species
reactive nitrogen species
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/131287

id SEDICI_35010dfcf1fab9b06b0ba56bf5d28bc4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/131287
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Redox regulation of sarcoplasmic reticulum calcium cycling in the heartDonoso, PaulinaSánchez, GinaCiencias Médicascalcium cyclingsarcoplasmic reticulumreactive oxygen speciesreactive nitrogen speciesThe coordinated release and reuptake of calcium into the sarcoplasmic reticulum (SR) is critical to maintain an adequate heart function. Reactive oxygen species (ROS) and reactive nitrogen species (RNS), generated in the heart under normal basal condition, modulate the function of different proteins via the reversible oxidation of critical cysteine residues. Excess ROS/RNS generation has been shown to impair heart function, but extensive evidence indicates that the controlled production of these molecules increases cardiac contractility by targeting SR calcium proteins. Ryanodine receptors (RyR2) are endogenously S-nitrosylated and S-glutathionylated and both redox modifications increase the activity of these channels in vitro. Moreover, exercise or rapid pacing increases the RyR2 S-glutathionylation, a modification that depends on the activation of NADPH oxidase (NOX2). In isolated cardiomyocytes, this enzyme is rapidly activated by stretch, generating an immediate burst of ROS which increases calcium release by RyR2. Nitroxyl, a particular ROS/RNS, increases cardiac inotropy in vivo, by targeting critical thiols in RyR2, the SR Ca2+-ATPase and phospholamban, allowing the simultaneous increase in calcium release and reuptake, required to produce a sustained increase in the calcium transient. In this minireview we present some of the recent work on the redox regulation of SR calcium cycling proteins.Sociedad Argentina de Fisiología2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf38-47http://sedici.unlp.edu.ar/handle/10915/131287enginfo:eu-repo/semantics/altIdentifier/url/https://pmr.safisiol.org.ar/uploadsarchivos/redox_regulation_of_sr_calcium_cycling_in_the_heart_final_j1.pdfinfo:eu-repo/semantics/altIdentifier/issn/1669-5410info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:05:05Zoai:sedici.unlp.edu.ar:10915/131287Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:05:06.161SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Redox regulation of sarcoplasmic reticulum calcium cycling in the heart
title Redox regulation of sarcoplasmic reticulum calcium cycling in the heart
spellingShingle Redox regulation of sarcoplasmic reticulum calcium cycling in the heart
Donoso, Paulina
Ciencias Médicas
calcium cycling
sarcoplasmic reticulum
reactive oxygen species
reactive nitrogen species
title_short Redox regulation of sarcoplasmic reticulum calcium cycling in the heart
title_full Redox regulation of sarcoplasmic reticulum calcium cycling in the heart
title_fullStr Redox regulation of sarcoplasmic reticulum calcium cycling in the heart
title_full_unstemmed Redox regulation of sarcoplasmic reticulum calcium cycling in the heart
title_sort Redox regulation of sarcoplasmic reticulum calcium cycling in the heart
dc.creator.none.fl_str_mv Donoso, Paulina
Sánchez, Gina
author Donoso, Paulina
author_facet Donoso, Paulina
Sánchez, Gina
author_role author
author2 Sánchez, Gina
author2_role author
dc.subject.none.fl_str_mv Ciencias Médicas
calcium cycling
sarcoplasmic reticulum
reactive oxygen species
reactive nitrogen species
topic Ciencias Médicas
calcium cycling
sarcoplasmic reticulum
reactive oxygen species
reactive nitrogen species
dc.description.none.fl_txt_mv The coordinated release and reuptake of calcium into the sarcoplasmic reticulum (SR) is critical to maintain an adequate heart function. Reactive oxygen species (ROS) and reactive nitrogen species (RNS), generated in the heart under normal basal condition, modulate the function of different proteins via the reversible oxidation of critical cysteine residues. Excess ROS/RNS generation has been shown to impair heart function, but extensive evidence indicates that the controlled production of these molecules increases cardiac contractility by targeting SR calcium proteins. Ryanodine receptors (RyR2) are endogenously S-nitrosylated and S-glutathionylated and both redox modifications increase the activity of these channels in vitro. Moreover, exercise or rapid pacing increases the RyR2 S-glutathionylation, a modification that depends on the activation of NADPH oxidase (NOX2). In isolated cardiomyocytes, this enzyme is rapidly activated by stretch, generating an immediate burst of ROS which increases calcium release by RyR2. Nitroxyl, a particular ROS/RNS, increases cardiac inotropy in vivo, by targeting critical thiols in RyR2, the SR Ca2+-ATPase and phospholamban, allowing the simultaneous increase in calcium release and reuptake, required to produce a sustained increase in the calcium transient. In this minireview we present some of the recent work on the redox regulation of SR calcium cycling proteins.
Sociedad Argentina de Fisiología
description The coordinated release and reuptake of calcium into the sarcoplasmic reticulum (SR) is critical to maintain an adequate heart function. Reactive oxygen species (ROS) and reactive nitrogen species (RNS), generated in the heart under normal basal condition, modulate the function of different proteins via the reversible oxidation of critical cysteine residues. Excess ROS/RNS generation has been shown to impair heart function, but extensive evidence indicates that the controlled production of these molecules increases cardiac contractility by targeting SR calcium proteins. Ryanodine receptors (RyR2) are endogenously S-nitrosylated and S-glutathionylated and both redox modifications increase the activity of these channels in vitro. Moreover, exercise or rapid pacing increases the RyR2 S-glutathionylation, a modification that depends on the activation of NADPH oxidase (NOX2). In isolated cardiomyocytes, this enzyme is rapidly activated by stretch, generating an immediate burst of ROS which increases calcium release by RyR2. Nitroxyl, a particular ROS/RNS, increases cardiac inotropy in vivo, by targeting critical thiols in RyR2, the SR Ca2+-ATPase and phospholamban, allowing the simultaneous increase in calcium release and reuptake, required to produce a sustained increase in the calcium transient. In this minireview we present some of the recent work on the redox regulation of SR calcium cycling proteins.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/131287
url http://sedici.unlp.edu.ar/handle/10915/131287
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pmr.safisiol.org.ar/uploadsarchivos/redox_regulation_of_sr_calcium_cycling_in_the_heart_final_j1.pdf
info:eu-repo/semantics/altIdentifier/issn/1669-5410
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
38-47
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260551732822016
score 13.13397