On a conjecture regarding Fisher information

Autores
Plastino, Ángel Luis; Bellomo, Guido; Plastino, Ángel Ricardo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fisher's information measure I plays a very important role in diverse areas of theoretical physics. The associated measures Ix and Ip, as functionals of quantum probability distributions defined in, respectively, coordinate and momentum spaces, are the protagonists of our present considerations. The product IxIp has been conjectured to exhibit a nontrivial lower bound in Hall (2000). More explicitly, this conjecture says that for any pure state of a particle in one dimension IxIp ≥ 4. We show here that such is not the case. This is illustrated, in particular, for pure states that are solutions to the free-particle Schrödinger equation. In fact, we construct a family of counterexamples to the conjecture, corresponding to time-dependent solutions of the free-particle Schrödinger equation. We also conjecture that any normalizable time-dependent solution of this equation verifies IxIp → 0 for t → ∞.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
Entropy
Fisher information
Complexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85739

id SEDICI_3429a2ec890a876f845952c5fb71568f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85739
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On a conjecture regarding Fisher informationPlastino, Ángel LuisBellomo, GuidoPlastino, Ángel RicardoCiencias ExactasEntropyFisher informationComplexityFisher's information measure I plays a very important role in diverse areas of theoretical physics. The associated measures I<SUB>x</SUB> and I<SUB>p</SUB>, as functionals of quantum probability distributions defined in, respectively, coordinate and momentum spaces, are the protagonists of our present considerations. The product I<SUB>x</SUB>I<SUB>p</SUB> has been conjectured to exhibit a nontrivial lower bound in Hall (2000). More explicitly, this conjecture says that for any pure state of a particle in one dimension I<SUB>x</SUB>I<SUB>p</SUB> ≥ 4. We show here that such is not the case. This is illustrated, in particular, for pure states that are solutions to the free-particle Schrödinger equation. In fact, we construct a family of counterexamples to the conjecture, corresponding to time-dependent solutions of the free-particle Schrödinger equation. We also conjecture that any normalizable time-dependent solution of this equation verifies I<SUB>x</SUB>I<SUB>p</SUB> → 0 for t → ∞.Facultad de Ciencias ExactasInstituto de Física La Plata2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/85739enginfo:eu-repo/semantics/altIdentifier/issn/1687-9120info:eu-repo/semantics/altIdentifier/doi/10.1155/2015/120698info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:59Zoai:sedici.unlp.edu.ar:10915/85739Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:59.406SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On a conjecture regarding Fisher information
title On a conjecture regarding Fisher information
spellingShingle On a conjecture regarding Fisher information
Plastino, Ángel Luis
Ciencias Exactas
Entropy
Fisher information
Complexity
title_short On a conjecture regarding Fisher information
title_full On a conjecture regarding Fisher information
title_fullStr On a conjecture regarding Fisher information
title_full_unstemmed On a conjecture regarding Fisher information
title_sort On a conjecture regarding Fisher information
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Bellomo, Guido
Plastino, Ángel Ricardo
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Bellomo, Guido
Plastino, Ángel Ricardo
author_role author
author2 Bellomo, Guido
Plastino, Ángel Ricardo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Entropy
Fisher information
Complexity
topic Ciencias Exactas
Entropy
Fisher information
Complexity
dc.description.none.fl_txt_mv Fisher's information measure I plays a very important role in diverse areas of theoretical physics. The associated measures I<SUB>x</SUB> and I<SUB>p</SUB>, as functionals of quantum probability distributions defined in, respectively, coordinate and momentum spaces, are the protagonists of our present considerations. The product I<SUB>x</SUB>I<SUB>p</SUB> has been conjectured to exhibit a nontrivial lower bound in Hall (2000). More explicitly, this conjecture says that for any pure state of a particle in one dimension I<SUB>x</SUB>I<SUB>p</SUB> ≥ 4. We show here that such is not the case. This is illustrated, in particular, for pure states that are solutions to the free-particle Schrödinger equation. In fact, we construct a family of counterexamples to the conjecture, corresponding to time-dependent solutions of the free-particle Schrödinger equation. We also conjecture that any normalizable time-dependent solution of this equation verifies I<SUB>x</SUB>I<SUB>p</SUB> → 0 for t → ∞.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description Fisher's information measure I plays a very important role in diverse areas of theoretical physics. The associated measures I<SUB>x</SUB> and I<SUB>p</SUB>, as functionals of quantum probability distributions defined in, respectively, coordinate and momentum spaces, are the protagonists of our present considerations. The product I<SUB>x</SUB>I<SUB>p</SUB> has been conjectured to exhibit a nontrivial lower bound in Hall (2000). More explicitly, this conjecture says that for any pure state of a particle in one dimension I<SUB>x</SUB>I<SUB>p</SUB> ≥ 4. We show here that such is not the case. This is illustrated, in particular, for pure states that are solutions to the free-particle Schrödinger equation. In fact, we construct a family of counterexamples to the conjecture, corresponding to time-dependent solutions of the free-particle Schrödinger equation. We also conjecture that any normalizable time-dependent solution of this equation verifies I<SUB>x</SUB>I<SUB>p</SUB> → 0 for t → ∞.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85739
url http://sedici.unlp.edu.ar/handle/10915/85739
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1687-9120
info:eu-repo/semantics/altIdentifier/doi/10.1155/2015/120698
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616042574249984
score 13.070432