Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores
- Autores
- Rucci, Enzo
- Año de publicación
- 2013
- Idioma
- español castellano
- Tipo de recurso
- tesis de maestría
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- De Giusti, Armando Eduardo
Naiouf, Marcelo - Descripción
- Una de las áreas de mayor interés y crecimiento en los últimos años dentro del procesamiento paralelo es la del tratamiento de grandes volúmenes de datos, tales como las secuencias de ADN. El tipo de procesamiento extensivo de comparación para analizar patrones genéticos requiere un esfuerzo importante en el desarrollo de algoritmos paralelos eficientes. El alineamiento de secuencias de ADN representa una de las operaciones más importantes dentro de la bioinformática. En 1981, Smith y Waterman desarrollaron un método para el alineamiento local de secuencias. Sin embargo, en la práctica se emplean diversas heurísticas en su lugar, debido a los requerimientos de procesamiento y de memoria del algoritmo Smith-Waterman. Si bien son más rápidas, las heurísticas no garantizan que el alineamiento óptimo sea encontrado. Es por ello que resulta interesante estudiar cómo aplicar la potencia de cómputo de plataformas paralelas actuales de manera de acelerar el proceso de alinear secuencias sin perder precisión en los resultados. Los niveles insostenibles de generación de calor y consumo de energía que se presentan al escalar al máximo la velocidad de los procesadores mononúcleos motivaron el surgimiento de los procesadores de múltiples núcleos (multicore). Un procesador multicore integra dos o más núcleos computacionales dentro de un único chip y, si bien estos son más simples y menos veloces, al combinarlos permiten mejorar el rendimiento global del procesador y al mismo tiempo hacerlo más eficiente energéticamente. Al incorporar este tipo de procesadores a los clusters convencionales, se da origen a una arquitectura conocida como cluster de multicores, que combina memoria compartida y distribuida, y donde la comunicación entre las diferentes unidades de procesamiento resulta ser heterogénea. En este trabajo se presenta un algoritmo paralelo distribuido para el alineamiento de secuencias de ADN basado en el método Smith-Waterman para ser ejecutado sobre las arquitecturas de cluster actuales. Además, se realiza un análisis de rendimiento del mismo. Por último, se presentan las conclusiones y las posibles líneas de trabajo futuro.
Especialista en Cómputo de Altas Prestaciones y Tecnología Grid
Universidad Nacional de La Plata
Facultad de Informática - Materia
-
Ciencias Informáticas
Parallel programming
alineamiento de secuencias de ADN
cluster de multicores
Distributed programming
Algorithms
método Smith-Waterman
programación paralela - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/27737
Ver los metadatos del registro completo
id |
SEDICI_3218586b8ee231aa5b49d7b9960878c6 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/27737 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicoresRucci, EnzoCiencias InformáticasParallel programmingalineamiento de secuencias de ADNcluster de multicoresDistributed programmingAlgorithmsmétodo Smith-Watermanprogramación paralelaUna de las áreas de mayor interés y crecimiento en los últimos años dentro del procesamiento paralelo es la del tratamiento de grandes volúmenes de datos, tales como las secuencias de ADN. El tipo de procesamiento extensivo de comparación para analizar patrones genéticos requiere un esfuerzo importante en el desarrollo de algoritmos paralelos eficientes. El alineamiento de secuencias de ADN representa una de las operaciones más importantes dentro de la bioinformática. En 1981, Smith y Waterman desarrollaron un método para el alineamiento local de secuencias. Sin embargo, en la práctica se emplean diversas heurísticas en su lugar, debido a los requerimientos de procesamiento y de memoria del algoritmo Smith-Waterman. Si bien son más rápidas, las heurísticas no garantizan que el alineamiento óptimo sea encontrado. Es por ello que resulta interesante estudiar cómo aplicar la potencia de cómputo de plataformas paralelas actuales de manera de acelerar el proceso de alinear secuencias sin perder precisión en los resultados. Los niveles insostenibles de generación de calor y consumo de energía que se presentan al escalar al máximo la velocidad de los procesadores mononúcleos motivaron el surgimiento de los procesadores de múltiples núcleos (multicore). Un procesador multicore integra dos o más núcleos computacionales dentro de un único chip y, si bien estos son más simples y menos veloces, al combinarlos permiten mejorar el rendimiento global del procesador y al mismo tiempo hacerlo más eficiente energéticamente. Al incorporar este tipo de procesadores a los clusters convencionales, se da origen a una arquitectura conocida como cluster de multicores, que combina memoria compartida y distribuida, y donde la comunicación entre las diferentes unidades de procesamiento resulta ser heterogénea. En este trabajo se presenta un algoritmo paralelo distribuido para el alineamiento de secuencias de ADN basado en el método Smith-Waterman para ser ejecutado sobre las arquitecturas de cluster actuales. Además, se realiza un análisis de rendimiento del mismo. Por último, se presentan las conclusiones y las posibles líneas de trabajo futuro.Especialista en Cómputo de Altas Prestaciones y Tecnología GridUniversidad Nacional de La PlataFacultad de InformáticaDe Giusti, Armando EduardoNaiouf, Marcelo2013-07-01info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTrabajo de especializacionhttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/27737spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/2.5/ar/Creative Commons Attribution-NonCommercial 2.5 Argentina (CC BY-NC 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:49:32Zoai:sedici.unlp.edu.ar:10915/27737Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:49:32.274SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores |
title |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores |
spellingShingle |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores Rucci, Enzo Ciencias Informáticas Parallel programming alineamiento de secuencias de ADN cluster de multicores Distributed programming Algorithms método Smith-Waterman programación paralela |
title_short |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores |
title_full |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores |
title_fullStr |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores |
title_full_unstemmed |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores |
title_sort |
Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores |
dc.creator.none.fl_str_mv |
Rucci, Enzo |
author |
Rucci, Enzo |
author_facet |
Rucci, Enzo |
author_role |
author |
dc.contributor.none.fl_str_mv |
De Giusti, Armando Eduardo Naiouf, Marcelo |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Parallel programming alineamiento de secuencias de ADN cluster de multicores Distributed programming Algorithms método Smith-Waterman programación paralela |
topic |
Ciencias Informáticas Parallel programming alineamiento de secuencias de ADN cluster de multicores Distributed programming Algorithms método Smith-Waterman programación paralela |
dc.description.none.fl_txt_mv |
Una de las áreas de mayor interés y crecimiento en los últimos años dentro del procesamiento paralelo es la del tratamiento de grandes volúmenes de datos, tales como las secuencias de ADN. El tipo de procesamiento extensivo de comparación para analizar patrones genéticos requiere un esfuerzo importante en el desarrollo de algoritmos paralelos eficientes. El alineamiento de secuencias de ADN representa una de las operaciones más importantes dentro de la bioinformática. En 1981, Smith y Waterman desarrollaron un método para el alineamiento local de secuencias. Sin embargo, en la práctica se emplean diversas heurísticas en su lugar, debido a los requerimientos de procesamiento y de memoria del algoritmo Smith-Waterman. Si bien son más rápidas, las heurísticas no garantizan que el alineamiento óptimo sea encontrado. Es por ello que resulta interesante estudiar cómo aplicar la potencia de cómputo de plataformas paralelas actuales de manera de acelerar el proceso de alinear secuencias sin perder precisión en los resultados. Los niveles insostenibles de generación de calor y consumo de energía que se presentan al escalar al máximo la velocidad de los procesadores mononúcleos motivaron el surgimiento de los procesadores de múltiples núcleos (multicore). Un procesador multicore integra dos o más núcleos computacionales dentro de un único chip y, si bien estos son más simples y menos veloces, al combinarlos permiten mejorar el rendimiento global del procesador y al mismo tiempo hacerlo más eficiente energéticamente. Al incorporar este tipo de procesadores a los clusters convencionales, se da origen a una arquitectura conocida como cluster de multicores, que combina memoria compartida y distribuida, y donde la comunicación entre las diferentes unidades de procesamiento resulta ser heterogénea. En este trabajo se presenta un algoritmo paralelo distribuido para el alineamiento de secuencias de ADN basado en el método Smith-Waterman para ser ejecutado sobre las arquitecturas de cluster actuales. Además, se realiza un análisis de rendimiento del mismo. Por último, se presentan las conclusiones y las posibles líneas de trabajo futuro. Especialista en Cómputo de Altas Prestaciones y Tecnología Grid Universidad Nacional de La Plata Facultad de Informática |
description |
Una de las áreas de mayor interés y crecimiento en los últimos años dentro del procesamiento paralelo es la del tratamiento de grandes volúmenes de datos, tales como las secuencias de ADN. El tipo de procesamiento extensivo de comparación para analizar patrones genéticos requiere un esfuerzo importante en el desarrollo de algoritmos paralelos eficientes. El alineamiento de secuencias de ADN representa una de las operaciones más importantes dentro de la bioinformática. En 1981, Smith y Waterman desarrollaron un método para el alineamiento local de secuencias. Sin embargo, en la práctica se emplean diversas heurísticas en su lugar, debido a los requerimientos de procesamiento y de memoria del algoritmo Smith-Waterman. Si bien son más rápidas, las heurísticas no garantizan que el alineamiento óptimo sea encontrado. Es por ello que resulta interesante estudiar cómo aplicar la potencia de cómputo de plataformas paralelas actuales de manera de acelerar el proceso de alinear secuencias sin perder precisión en los resultados. Los niveles insostenibles de generación de calor y consumo de energía que se presentan al escalar al máximo la velocidad de los procesadores mononúcleos motivaron el surgimiento de los procesadores de múltiples núcleos (multicore). Un procesador multicore integra dos o más núcleos computacionales dentro de un único chip y, si bien estos son más simples y menos veloces, al combinarlos permiten mejorar el rendimiento global del procesador y al mismo tiempo hacerlo más eficiente energéticamente. Al incorporar este tipo de procesadores a los clusters convencionales, se da origen a una arquitectura conocida como cluster de multicores, que combina memoria compartida y distribuida, y donde la comunicación entre las diferentes unidades de procesamiento resulta ser heterogénea. En este trabajo se presenta un algoritmo paralelo distribuido para el alineamiento de secuencias de ADN basado en el método Smith-Waterman para ser ejecutado sobre las arquitecturas de cluster actuales. Además, se realiza un análisis de rendimiento del mismo. Por último, se presentan las conclusiones y las posibles líneas de trabajo futuro. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion Trabajo de especializacion http://purl.org/coar/resource_type/c_bdcc info:ar-repo/semantics/tesisDeMaestria |
format |
masterThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/27737 |
url |
http://sedici.unlp.edu.ar/handle/10915/27737 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/2.5/ar/ Creative Commons Attribution-NonCommercial 2.5 Argentina (CC BY-NC 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/2.5/ar/ Creative Commons Attribution-NonCommercial 2.5 Argentina (CC BY-NC 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063926586900481 |
score |
13.22299 |