Stochastic Quantization of the Chern-Simons Theory
- Autores
- Cugliandolo, Leticia F.; Rossini, Gerardo Luis; Schaposnik, Fidel Arturo
- Año de publicación
- 1992
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Física
Propagator
Chern–Simons theory
Regularization (physics)
Langevin equation
Stochastic quantization
Topological invariants
Mathematical physics
Quantum field theory
Partition function (mathematics) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/122930
Ver los metadatos del registro completo
id |
SEDICI_3028e75917a2269a847a9b2261adf3c9 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/122930 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Stochastic Quantization of the Chern-Simons TheoryCugliandolo, Leticia F.Rossini, Gerardo LuisSchaposnik, Fidel ArturoCiencias ExactasFísicaPropagatorChern–Simons theoryRegularization (physics)Langevin equationStochastic quantizationTopological invariantsMathematical physicsQuantum field theoryPartition function (mathematics)We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization.Facultad de Ciencias Exactas1992info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf40-54http://sedici.unlp.edu.ar/handle/10915/122930enginfo:eu-repo/semantics/altIdentifier/issn/0003-4916info:eu-repo/semantics/altIdentifier/arxiv/hep-th/9202030info:eu-repo/semantics/altIdentifier/doi/10.1016/0003-4916(92)90325-ginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:14Zoai:sedici.unlp.edu.ar:10915/122930Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:15.123SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Stochastic Quantization of the Chern-Simons Theory |
title |
Stochastic Quantization of the Chern-Simons Theory |
spellingShingle |
Stochastic Quantization of the Chern-Simons Theory Cugliandolo, Leticia F. Ciencias Exactas Física Propagator Chern–Simons theory Regularization (physics) Langevin equation Stochastic quantization Topological invariants Mathematical physics Quantum field theory Partition function (mathematics) |
title_short |
Stochastic Quantization of the Chern-Simons Theory |
title_full |
Stochastic Quantization of the Chern-Simons Theory |
title_fullStr |
Stochastic Quantization of the Chern-Simons Theory |
title_full_unstemmed |
Stochastic Quantization of the Chern-Simons Theory |
title_sort |
Stochastic Quantization of the Chern-Simons Theory |
dc.creator.none.fl_str_mv |
Cugliandolo, Leticia F. Rossini, Gerardo Luis Schaposnik, Fidel Arturo |
author |
Cugliandolo, Leticia F. |
author_facet |
Cugliandolo, Leticia F. Rossini, Gerardo Luis Schaposnik, Fidel Arturo |
author_role |
author |
author2 |
Rossini, Gerardo Luis Schaposnik, Fidel Arturo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Propagator Chern–Simons theory Regularization (physics) Langevin equation Stochastic quantization Topological invariants Mathematical physics Quantum field theory Partition function (mathematics) |
topic |
Ciencias Exactas Física Propagator Chern–Simons theory Regularization (physics) Langevin equation Stochastic quantization Topological invariants Mathematical physics Quantum field theory Partition function (mathematics) |
dc.description.none.fl_txt_mv |
We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization. Facultad de Ciencias Exactas |
description |
We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization. |
publishDate |
1992 |
dc.date.none.fl_str_mv |
1992 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/122930 |
url |
http://sedici.unlp.edu.ar/handle/10915/122930 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0003-4916 info:eu-repo/semantics/altIdentifier/arxiv/hep-th/9202030 info:eu-repo/semantics/altIdentifier/doi/10.1016/0003-4916(92)90325-g |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 40-54 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616171656052736 |
score |
13.070432 |