Stochastic Quantization of the Chern-Simons Theory

Autores
Cugliandolo, Leticia F.; Rossini, Gerardo Luis; Schaposnik, Fidel Arturo
Año de publicación
1992
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Física
Propagator
Chern–Simons theory
Regularization (physics)
Langevin equation
Stochastic quantization
Topological invariants
Mathematical physics
Quantum field theory
Partition function (mathematics)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/122930

id SEDICI_3028e75917a2269a847a9b2261adf3c9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/122930
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Stochastic Quantization of the Chern-Simons TheoryCugliandolo, Leticia F.Rossini, Gerardo LuisSchaposnik, Fidel ArturoCiencias ExactasFísicaPropagatorChern–Simons theoryRegularization (physics)Langevin equationStochastic quantizationTopological invariantsMathematical physicsQuantum field theoryPartition function (mathematics)We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization.Facultad de Ciencias Exactas1992info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf40-54http://sedici.unlp.edu.ar/handle/10915/122930enginfo:eu-repo/semantics/altIdentifier/issn/0003-4916info:eu-repo/semantics/altIdentifier/arxiv/hep-th/9202030info:eu-repo/semantics/altIdentifier/doi/10.1016/0003-4916(92)90325-ginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:14Zoai:sedici.unlp.edu.ar:10915/122930Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:15.123SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Stochastic Quantization of the Chern-Simons Theory
title Stochastic Quantization of the Chern-Simons Theory
spellingShingle Stochastic Quantization of the Chern-Simons Theory
Cugliandolo, Leticia F.
Ciencias Exactas
Física
Propagator
Chern–Simons theory
Regularization (physics)
Langevin equation
Stochastic quantization
Topological invariants
Mathematical physics
Quantum field theory
Partition function (mathematics)
title_short Stochastic Quantization of the Chern-Simons Theory
title_full Stochastic Quantization of the Chern-Simons Theory
title_fullStr Stochastic Quantization of the Chern-Simons Theory
title_full_unstemmed Stochastic Quantization of the Chern-Simons Theory
title_sort Stochastic Quantization of the Chern-Simons Theory
dc.creator.none.fl_str_mv Cugliandolo, Leticia F.
Rossini, Gerardo Luis
Schaposnik, Fidel Arturo
author Cugliandolo, Leticia F.
author_facet Cugliandolo, Leticia F.
Rossini, Gerardo Luis
Schaposnik, Fidel Arturo
author_role author
author2 Rossini, Gerardo Luis
Schaposnik, Fidel Arturo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Propagator
Chern–Simons theory
Regularization (physics)
Langevin equation
Stochastic quantization
Topological invariants
Mathematical physics
Quantum field theory
Partition function (mathematics)
topic Ciencias Exactas
Física
Propagator
Chern–Simons theory
Regularization (physics)
Langevin equation
Stochastic quantization
Topological invariants
Mathematical physics
Quantum field theory
Partition function (mathematics)
dc.description.none.fl_txt_mv We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization.
Facultad de Ciencias Exactas
description We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization.
publishDate 1992
dc.date.none.fl_str_mv 1992
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/122930
url http://sedici.unlp.edu.ar/handle/10915/122930
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0003-4916
info:eu-repo/semantics/altIdentifier/arxiv/hep-th/9202030
info:eu-repo/semantics/altIdentifier/doi/10.1016/0003-4916(92)90325-g
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
40-54
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616171656052736
score 13.070432