Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning

Autores
Córsico, Alejandro Hugo; Althaus, Leandro Gabriel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85188

id SEDICI_2f931b5e6bac311edb0aa4b77c5087e9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85188
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burningCórsico, Alejandro HugoAlthaus, Leandro GabrielCiencias AstronómicasStars: evolutionStars: interiorsStars: oscillationsWhite dwarfsThe detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2014-09-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/85188enginfo:eu-repo/semantics/altIdentifier/issn/2041-8205info:eu-repo/semantics/altIdentifier/doi/10.1088/2041-8205/793/1/L17info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:19:03Zoai:sedici.unlp.edu.ar:10915/85188Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:19:03.863SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning
title Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning
spellingShingle Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning
Córsico, Alejandro Hugo
Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs
title_short Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning
title_full Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning
title_fullStr Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning
title_full_unstemmed Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning
title_sort Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning
dc.creator.none.fl_str_mv Córsico, Alejandro Hugo
Althaus, Leandro Gabriel
author Córsico, Alejandro Hugo
author_facet Córsico, Alejandro Hugo
Althaus, Leandro Gabriel
author_role author
author2 Althaus, Leandro Gabriel
author2_role author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs
topic Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs
dc.description.none.fl_txt_mv The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
description The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.
publishDate 2014
dc.date.none.fl_str_mv 2014-09-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85188
url http://sedici.unlp.edu.ar/handle/10915/85188
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2041-8205
info:eu-repo/semantics/altIdentifier/doi/10.1088/2041-8205/793/1/L17
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904176136290304
score 12.993085