Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB>
- Autores
- Massa, Néstor Emilio; Campo, Leire del; De Sousa Meneses, Domingos; Echegut, Patrick; Martínez Lope, María Jesús; Alonso, José Antonio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We report on temperature dependent TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (Z = 2) space group due to high temperature anharmonicity and possible defect induced bitetrahedra misalignments. On cooling, at ~1600 ± 40 K, TmMnO3 goes from non-polar to an antiferroelectric–ferroelectric polar phase reaching the ferroelectric onset at ~700 K.Room temperature reflectivity is fitted using 19 oscillators and this number of phonons is maintained down to 4 K. A weak phonon anomaly in the band profile at 217 cm−1 (4 K) suggests subtle Rare Earth magneto-electric couplings at ~TN and below.A low energy collective excitation is identified as a THz instability associated with room temperature eg electrons in a d-orbital fluctuating environment. It condenses into two modes that emerge pinned to the E-type antiferromagnetic order hardening simultaneously down to 4 K. They obey power laws with TN as the critical temperature and match known zone center magnons. The one peaking at 26 cm−1, with critical exponent β=0.42 as for antiferromagnetic order in a hexagonal lattice, is dependent on the Rare Earth ion. The higher frequency companion at ~50 cm−1, with β=0.25, splits at ~TN into two peaks. The weaker band of the two is assimilated to the upper branch of the gap opening in the transverse acoustical (TA) phonon branch crossing the magnetic dispersion found in YMnO3. (Petit et al 2007 Phys. Rev. Lett. 99 266604). The stronger second band at ~36 cm−1 corresponds to the lower branch of the TA gap. We assign both excitations as zone center magneto-electric hybrid quasiparticles, concluding that in NdMnO3 perovskite the equivalent picture corresponds to an instability which may be driven by an external field to transform NdMnO3 into a multiferroic compound by perturbation enhancing the TA phonon–magnetic correlation.
Centro de Química Inorgánica - Materia
-
Química
TmMnO3
phase transition ferroelectric
magnetoelectric effects
multiferroics
far infrared reflectivity
far infrared emissivity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/131016
Ver los metadatos del registro completo
id |
SEDICI_2b98159d89eb870f5d2387e8de02c6bc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/131016 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB>Massa, Néstor EmilioCampo, Leire delDe Sousa Meneses, DomingosEchegut, PatrickMartínez Lope, María JesúsAlonso, José AntonioQuímicaTmMnO3phase transition ferroelectricmagnetoelectric effectsmultiferroicsfar infrared reflectivityfar infrared emissivityWe report on temperature dependent TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (Z = 2) space group due to high temperature anharmonicity and possible defect induced bitetrahedra misalignments. On cooling, at ~1600 ± 40 K, TmMnO3 goes from non-polar to an antiferroelectric–ferroelectric polar phase reaching the ferroelectric onset at ~700 K.Room temperature reflectivity is fitted using 19 oscillators and this number of phonons is maintained down to 4 K. A weak phonon anomaly in the band profile at 217 cm−1 (4 K) suggests subtle Rare Earth magneto-electric couplings at ~TN and below.A low energy collective excitation is identified as a THz instability associated with room temperature eg electrons in a d-orbital fluctuating environment. It condenses into two modes that emerge pinned to the E-type antiferromagnetic order hardening simultaneously down to 4 K. They obey power laws with TN as the critical temperature and match known zone center magnons. The one peaking at 26 cm−1, with critical exponent β=0.42 as for antiferromagnetic order in a hexagonal lattice, is dependent on the Rare Earth ion. The higher frequency companion at ~50 cm−1, with β=0.25, splits at ~TN into two peaks. The weaker band of the two is assimilated to the upper branch of the gap opening in the transverse acoustical (TA) phonon branch crossing the magnetic dispersion found in YMnO3. (Petit et al 2007 Phys. Rev. Lett. 99 266604). The stronger second band at ~36 cm−1 corresponds to the lower branch of the TA gap. We assign both excitations as zone center magneto-electric hybrid quasiparticles, concluding that in NdMnO3 perovskite the equivalent picture corresponds to an instability which may be driven by an external field to transform NdMnO3 into a multiferroic compound by perturbation enhancing the TA phonon–magnetic correlation.Centro de Química Inorgánica2014-06-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/131016enginfo:eu-repo/semantics/altIdentifier/issn/1361-648Xinfo:eu-repo/semantics/altIdentifier/issn/0953-8984info:eu-repo/semantics/altIdentifier/pmid/24918339info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/26/27/275901info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:33:50Zoai:sedici.unlp.edu.ar:10915/131016Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:33:50.746SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB> |
title |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB> |
spellingShingle |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB> Massa, Néstor Emilio Química TmMnO3 phase transition ferroelectric magnetoelectric effects multiferroics far infrared reflectivity far infrared emissivity |
title_short |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB> |
title_full |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB> |
title_fullStr |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB> |
title_full_unstemmed |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB> |
title_sort |
Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO<SUB>3</SUB> |
dc.creator.none.fl_str_mv |
Massa, Néstor Emilio Campo, Leire del De Sousa Meneses, Domingos Echegut, Patrick Martínez Lope, María Jesús Alonso, José Antonio |
author |
Massa, Néstor Emilio |
author_facet |
Massa, Néstor Emilio Campo, Leire del De Sousa Meneses, Domingos Echegut, Patrick Martínez Lope, María Jesús Alonso, José Antonio |
author_role |
author |
author2 |
Campo, Leire del De Sousa Meneses, Domingos Echegut, Patrick Martínez Lope, María Jesús Alonso, José Antonio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Química TmMnO3 phase transition ferroelectric magnetoelectric effects multiferroics far infrared reflectivity far infrared emissivity |
topic |
Química TmMnO3 phase transition ferroelectric magnetoelectric effects multiferroics far infrared reflectivity far infrared emissivity |
dc.description.none.fl_txt_mv |
We report on temperature dependent TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (Z = 2) space group due to high temperature anharmonicity and possible defect induced bitetrahedra misalignments. On cooling, at ~1600 ± 40 K, TmMnO3 goes from non-polar to an antiferroelectric–ferroelectric polar phase reaching the ferroelectric onset at ~700 K.Room temperature reflectivity is fitted using 19 oscillators and this number of phonons is maintained down to 4 K. A weak phonon anomaly in the band profile at 217 cm−1 (4 K) suggests subtle Rare Earth magneto-electric couplings at ~TN and below.A low energy collective excitation is identified as a THz instability associated with room temperature eg electrons in a d-orbital fluctuating environment. It condenses into two modes that emerge pinned to the E-type antiferromagnetic order hardening simultaneously down to 4 K. They obey power laws with TN as the critical temperature and match known zone center magnons. The one peaking at 26 cm−1, with critical exponent β=0.42 as for antiferromagnetic order in a hexagonal lattice, is dependent on the Rare Earth ion. The higher frequency companion at ~50 cm−1, with β=0.25, splits at ~TN into two peaks. The weaker band of the two is assimilated to the upper branch of the gap opening in the transverse acoustical (TA) phonon branch crossing the magnetic dispersion found in YMnO3. (Petit et al 2007 Phys. Rev. Lett. 99 266604). The stronger second band at ~36 cm−1 corresponds to the lower branch of the TA gap. We assign both excitations as zone center magneto-electric hybrid quasiparticles, concluding that in NdMnO3 perovskite the equivalent picture corresponds to an instability which may be driven by an external field to transform NdMnO3 into a multiferroic compound by perturbation enhancing the TA phonon–magnetic correlation. Centro de Química Inorgánica |
description |
We report on temperature dependent TmMnO3 far infrared emissivity and reflectivity spectra from 1910 K to 4 K. At the highest temperature the number of infrared bands is lower than that predicted for centrosymmetric P63/mmc (Z = 2) space group due to high temperature anharmonicity and possible defect induced bitetrahedra misalignments. On cooling, at ~1600 ± 40 K, TmMnO3 goes from non-polar to an antiferroelectric–ferroelectric polar phase reaching the ferroelectric onset at ~700 K.Room temperature reflectivity is fitted using 19 oscillators and this number of phonons is maintained down to 4 K. A weak phonon anomaly in the band profile at 217 cm−1 (4 K) suggests subtle Rare Earth magneto-electric couplings at ~TN and below.A low energy collective excitation is identified as a THz instability associated with room temperature eg electrons in a d-orbital fluctuating environment. It condenses into two modes that emerge pinned to the E-type antiferromagnetic order hardening simultaneously down to 4 K. They obey power laws with TN as the critical temperature and match known zone center magnons. The one peaking at 26 cm−1, with critical exponent β=0.42 as for antiferromagnetic order in a hexagonal lattice, is dependent on the Rare Earth ion. The higher frequency companion at ~50 cm−1, with β=0.25, splits at ~TN into two peaks. The weaker band of the two is assimilated to the upper branch of the gap opening in the transverse acoustical (TA) phonon branch crossing the magnetic dispersion found in YMnO3. (Petit et al 2007 Phys. Rev. Lett. 99 266604). The stronger second band at ~36 cm−1 corresponds to the lower branch of the TA gap. We assign both excitations as zone center magneto-electric hybrid quasiparticles, concluding that in NdMnO3 perovskite the equivalent picture corresponds to an instability which may be driven by an external field to transform NdMnO3 into a multiferroic compound by perturbation enhancing the TA phonon–magnetic correlation. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/131016 |
url |
http://sedici.unlp.edu.ar/handle/10915/131016 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1361-648X info:eu-repo/semantics/altIdentifier/issn/0953-8984 info:eu-repo/semantics/altIdentifier/pmid/24918339 info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/26/27/275901 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904465562140672 |
score |
12.993085 |