New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited

Autores
Córsico, Alejandro Hugo; Althaus, Leandro Gabriel; Miller Bertolami, Marcelo Miguel
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Aims. We reexamine the theoretical instability domain of pulsating PG 1159 stars (GW Vir variables). Methods. We performed an extensive g-mode stability analysis on PG 1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 M⊙, for which the complete evolutionary stages of their progenitors from the ZAMS, through the thermally pulsing AGB and born-again phases to the domain of the PG 1159 stars have been considered. Results. We found that pulsations in PG 1159 stars are excited by the k-mechanism due to partial ionization of carbon and oxygen, and that no composition gradients are needed between the surface layers and the driving region, much in agreement with previous studies. We show, for the first time, the existence of a red edge of the instability strip at high luminosities. We found that all of the GW Vir stars lay within our theoretical instability strip. Our results suggest a qualitative good agreement between the observed and the predicted ranges of unstable periods of individual stars. Finally, we found that generally the seismic masses (derived from the period spacing) of GW Vir stars are somewhat different from the masses suggested by evolutionary tracks coupled with spectroscopy. Improvements in the evolution during the thermally pulsing AGB phase and/or during the core helium burning stage and early AGB could help to alleviate the persisting discrepancies.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83211

id SEDICI_29c6941ae96f12b90091459f2123556d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83211
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisitedCórsico, Alejandro HugoAlthaus, Leandro GabrielMiller Bertolami, Marcelo MiguelCiencias AstronómicasStars: evolutionStars: interiorsStars: oscillationsWhite dwarfsAims. We reexamine the theoretical instability domain of pulsating PG 1159 stars (GW Vir variables). Methods. We performed an extensive g-mode stability analysis on PG 1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 M⊙, for which the complete evolutionary stages of their progenitors from the ZAMS, through the thermally pulsing AGB and born-again phases to the domain of the PG 1159 stars have been considered. Results. We found that pulsations in PG 1159 stars are excited by the k-mechanism due to partial ionization of carbon and oxygen, and that no composition gradients are needed between the surface layers and the driving region, much in agreement with previous studies. We show, for the first time, the existence of a red edge of the instability strip at high luminosities. We found that all of the GW Vir stars lay within our theoretical instability strip. Our results suggest a qualitative good agreement between the observed and the predicted ranges of unstable periods of individual stars. Finally, we found that generally the seismic masses (derived from the period spacing) of GW Vir stars are somewhat different from the masses suggested by evolutionary tracks coupled with spectroscopy. Improvements in the evolution during the thermally pulsing AGB phase and/or during the core helium burning stage and early AGB could help to alleviate the persisting discrepancies.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf259-267http://sedici.unlp.edu.ar/handle/10915/83211enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20065423info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:58:29Zoai:sedici.unlp.edu.ar:10915/83211Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:58:29.816SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited
title New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited
spellingShingle New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited
Córsico, Alejandro Hugo
Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs
title_short New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited
title_full New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited
title_fullStr New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited
title_full_unstemmed New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited
title_sort New nonadiabatic pulsation computations on full PG 1159 evolutionary models: The theoretical GW Virginis instability strip revisited
dc.creator.none.fl_str_mv Córsico, Alejandro Hugo
Althaus, Leandro Gabriel
Miller Bertolami, Marcelo Miguel
author Córsico, Alejandro Hugo
author_facet Córsico, Alejandro Hugo
Althaus, Leandro Gabriel
Miller Bertolami, Marcelo Miguel
author_role author
author2 Althaus, Leandro Gabriel
Miller Bertolami, Marcelo Miguel
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs
topic Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
White dwarfs
dc.description.none.fl_txt_mv Aims. We reexamine the theoretical instability domain of pulsating PG 1159 stars (GW Vir variables). Methods. We performed an extensive g-mode stability analysis on PG 1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 M⊙, for which the complete evolutionary stages of their progenitors from the ZAMS, through the thermally pulsing AGB and born-again phases to the domain of the PG 1159 stars have been considered. Results. We found that pulsations in PG 1159 stars are excited by the k-mechanism due to partial ionization of carbon and oxygen, and that no composition gradients are needed between the surface layers and the driving region, much in agreement with previous studies. We show, for the first time, the existence of a red edge of the instability strip at high luminosities. We found that all of the GW Vir stars lay within our theoretical instability strip. Our results suggest a qualitative good agreement between the observed and the predicted ranges of unstable periods of individual stars. Finally, we found that generally the seismic masses (derived from the period spacing) of GW Vir stars are somewhat different from the masses suggested by evolutionary tracks coupled with spectroscopy. Improvements in the evolution during the thermally pulsing AGB phase and/or during the core helium burning stage and early AGB could help to alleviate the persisting discrepancies.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
description Aims. We reexamine the theoretical instability domain of pulsating PG 1159 stars (GW Vir variables). Methods. We performed an extensive g-mode stability analysis on PG 1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 M⊙, for which the complete evolutionary stages of their progenitors from the ZAMS, through the thermally pulsing AGB and born-again phases to the domain of the PG 1159 stars have been considered. Results. We found that pulsations in PG 1159 stars are excited by the k-mechanism due to partial ionization of carbon and oxygen, and that no composition gradients are needed between the surface layers and the driving region, much in agreement with previous studies. We show, for the first time, the existence of a red edge of the instability strip at high luminosities. We found that all of the GW Vir stars lay within our theoretical instability strip. Our results suggest a qualitative good agreement between the observed and the predicted ranges of unstable periods of individual stars. Finally, we found that generally the seismic masses (derived from the period spacing) of GW Vir stars are somewhat different from the masses suggested by evolutionary tracks coupled with spectroscopy. Improvements in the evolution during the thermally pulsing AGB phase and/or during the core helium burning stage and early AGB could help to alleviate the persisting discrepancies.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83211
url http://sedici.unlp.edu.ar/handle/10915/83211
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20065423
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
259-267
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532456731344896
score 13.001348