Drawing information from the ground state G-particle-hole matrix to study electronic excited states

Autores
Alcoba, Diego Ricardo; Oña, Ofelia Beatriz; Valdemoro, C.; Tel, L. C.; Massaccesi, Gustavo E.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Very recently, we have shown the suitability to combine the G-particle-hole Hypervirial (GHV) equation method (Alcoba et al. in Int J Quantum Chem 109:3178, 2009) with the Hermitian Operator (HO) method (Bouten et al. in Nucl Phys A 202:127, 1973) for computing various energy differences of an electronic system spectrum (Valdemoro et al. in J Math Chem 50:492, 2012). The purpose of this paper is to extend our preliminary studies by applying the combined GHV-HO method to obtain the set of ground and low-lying excited states potential energy curves of several selected electronic systems. The calculations confirm the reliability of the method.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Física
Ciencias Exactas
G-particle-hole matrix
Reduced density matrix
Excited states
Electronic correlation effects
Hypervirial
Hermitian operator method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/134804

id SEDICI_2805c00f118833404b28f6df85409a03
oai_identifier_str oai:sedici.unlp.edu.ar:10915/134804
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Drawing information from the ground state G-particle-hole matrix to study electronic excited statesAlcoba, Diego RicardoOña, Ofelia BeatrizValdemoro, C.Tel, L. C.Massaccesi, Gustavo E.FísicaCiencias ExactasG-particle-hole matrixReduced density matrixExcited statesElectronic correlation effectsHypervirialHermitian operator methodVery recently, we have shown the suitability to combine the G-particle-hole Hypervirial (GHV) equation method (Alcoba et al. in Int J Quantum Chem 109:3178, 2009) with the Hermitian Operator (HO) method (Bouten et al. in Nucl Phys A 202:127, 1973) for computing various energy differences of an electronic system spectrum (Valdemoro et al. in J Math Chem 50:492, 2012). The purpose of this paper is to extend our preliminary studies by applying the combined GHV-HO method to obtain the set of ground and low-lying excited states potential energy curves of several selected electronic systems. The calculations confirm the reliability of the method.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2012-06-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2478-2491http://sedici.unlp.edu.ar/handle/10915/134804enginfo:eu-repo/semantics/altIdentifier/issn/0259-9791info:eu-repo/semantics/altIdentifier/issn/1572-8897info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-012-0044-4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:52Zoai:sedici.unlp.edu.ar:10915/134804Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:52.309SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Drawing information from the ground state G-particle-hole matrix to study electronic excited states
title Drawing information from the ground state G-particle-hole matrix to study electronic excited states
spellingShingle Drawing information from the ground state G-particle-hole matrix to study electronic excited states
Alcoba, Diego Ricardo
Física
Ciencias Exactas
G-particle-hole matrix
Reduced density matrix
Excited states
Electronic correlation effects
Hypervirial
Hermitian operator method
title_short Drawing information from the ground state G-particle-hole matrix to study electronic excited states
title_full Drawing information from the ground state G-particle-hole matrix to study electronic excited states
title_fullStr Drawing information from the ground state G-particle-hole matrix to study electronic excited states
title_full_unstemmed Drawing information from the ground state G-particle-hole matrix to study electronic excited states
title_sort Drawing information from the ground state G-particle-hole matrix to study electronic excited states
dc.creator.none.fl_str_mv Alcoba, Diego Ricardo
Oña, Ofelia Beatriz
Valdemoro, C.
Tel, L. C.
Massaccesi, Gustavo E.
author Alcoba, Diego Ricardo
author_facet Alcoba, Diego Ricardo
Oña, Ofelia Beatriz
Valdemoro, C.
Tel, L. C.
Massaccesi, Gustavo E.
author_role author
author2 Oña, Ofelia Beatriz
Valdemoro, C.
Tel, L. C.
Massaccesi, Gustavo E.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Física
Ciencias Exactas
G-particle-hole matrix
Reduced density matrix
Excited states
Electronic correlation effects
Hypervirial
Hermitian operator method
topic Física
Ciencias Exactas
G-particle-hole matrix
Reduced density matrix
Excited states
Electronic correlation effects
Hypervirial
Hermitian operator method
dc.description.none.fl_txt_mv Very recently, we have shown the suitability to combine the G-particle-hole Hypervirial (GHV) equation method (Alcoba et al. in Int J Quantum Chem 109:3178, 2009) with the Hermitian Operator (HO) method (Bouten et al. in Nucl Phys A 202:127, 1973) for computing various energy differences of an electronic system spectrum (Valdemoro et al. in J Math Chem 50:492, 2012). The purpose of this paper is to extend our preliminary studies by applying the combined GHV-HO method to obtain the set of ground and low-lying excited states potential energy curves of several selected electronic systems. The calculations confirm the reliability of the method.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description Very recently, we have shown the suitability to combine the G-particle-hole Hypervirial (GHV) equation method (Alcoba et al. in Int J Quantum Chem 109:3178, 2009) with the Hermitian Operator (HO) method (Bouten et al. in Nucl Phys A 202:127, 1973) for computing various energy differences of an electronic system spectrum (Valdemoro et al. in J Math Chem 50:492, 2012). The purpose of this paper is to extend our preliminary studies by applying the combined GHV-HO method to obtain the set of ground and low-lying excited states potential energy curves of several selected electronic systems. The calculations confirm the reliability of the method.
publishDate 2012
dc.date.none.fl_str_mv 2012-06-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/134804
url http://sedici.unlp.edu.ar/handle/10915/134804
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0259-9791
info:eu-repo/semantics/altIdentifier/issn/1572-8897
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-012-0044-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
2478-2491
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616198015156224
score 13.070432