Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems

Autores
Calderón, Lucila Daniela; Martín, María Teresa; Vampa, Victoria Cristina; Muszkats, Juan Pablo; Seminara, Silvia Alejandra; Troparevsky, María Inés
Año de publicación
2020
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method.
Facultad de Ingeniería
Materia
Ingeniería
Matemática
differential equations
oscillatory functions
Wavelet-Galerkin method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/134801

id SEDICI_257cdccc31bfe2aadbddb0f241808b02
oai_identifier_str oai:sedici.unlp.edu.ar:10915/134801
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Wavelet B-Splines Bases on the Interval for Solving Boundary Value ProblemsCalderón, Lucila DanielaMartín, María TeresaVampa, Victoria CristinaMuszkats, Juan PabloSeminara, Silvia AlejandraTroparevsky, María InésIngenieríaMatemáticadifferential equationsoscillatory functionsWavelet-Galerkin methodThe use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method.Facultad de IngenieríaSpringer2020-12-01info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf23-40http://sedici.unlp.edu.ar/handle/10915/134801enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-030-61713-4info:eu-repo/semantics/altIdentifier/issn/2199-3041info:eu-repo/semantics/altIdentifier/issn/2199-305xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-61713-4_2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:48Zoai:sedici.unlp.edu.ar:10915/134801Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:48.266SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
spellingShingle Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
Calderón, Lucila Daniela
Ingeniería
Matemática
differential equations
oscillatory functions
Wavelet-Galerkin method
title_short Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_full Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_fullStr Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_full_unstemmed Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
title_sort Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
dc.creator.none.fl_str_mv Calderón, Lucila Daniela
Martín, María Teresa
Vampa, Victoria Cristina
Muszkats, Juan Pablo
Seminara, Silvia Alejandra
Troparevsky, María Inés
author Calderón, Lucila Daniela
author_facet Calderón, Lucila Daniela
Martín, María Teresa
Vampa, Victoria Cristina
Muszkats, Juan Pablo
Seminara, Silvia Alejandra
Troparevsky, María Inés
author_role author
author2 Martín, María Teresa
Vampa, Victoria Cristina
Muszkats, Juan Pablo
Seminara, Silvia Alejandra
Troparevsky, María Inés
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ingeniería
Matemática
differential equations
oscillatory functions
Wavelet-Galerkin method
topic Ingeniería
Matemática
differential equations
oscillatory functions
Wavelet-Galerkin method
dc.description.none.fl_txt_mv The use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method.
Facultad de Ingeniería
description The use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/134801
url http://sedici.unlp.edu.ar/handle/10915/134801
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-3-030-61713-4
info:eu-repo/semantics/altIdentifier/issn/2199-3041
info:eu-repo/semantics/altIdentifier/issn/2199-305x
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-61713-4_2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
23-40
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616197613551616
score 13.070432