Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems
- Autores
- Calderón, Lucila Daniela; Martín, María Teresa; Vampa, Victoria Cristina; Muszkats, Juan Pablo; Seminara, Silvia Alejandra; Troparevsky, María Inés
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method.
Facultad de Ingeniería - Materia
-
Ingeniería
Matemática
differential equations
oscillatory functions
Wavelet-Galerkin method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/134801
Ver los metadatos del registro completo
id |
SEDICI_257cdccc31bfe2aadbddb0f241808b02 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/134801 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value ProblemsCalderón, Lucila DanielaMartín, María TeresaVampa, Victoria CristinaMuszkats, Juan PabloSeminara, Silvia AlejandraTroparevsky, María InésIngenieríaMatemáticadifferential equationsoscillatory functionsWavelet-Galerkin methodThe use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method.Facultad de IngenieríaSpringer2020-12-01info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf23-40http://sedici.unlp.edu.ar/handle/10915/134801enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-030-61713-4info:eu-repo/semantics/altIdentifier/issn/2199-3041info:eu-repo/semantics/altIdentifier/issn/2199-305xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-61713-4_2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:48Zoai:sedici.unlp.edu.ar:10915/134801Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:48.266SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems |
title |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems |
spellingShingle |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems Calderón, Lucila Daniela Ingeniería Matemática differential equations oscillatory functions Wavelet-Galerkin method |
title_short |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems |
title_full |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems |
title_fullStr |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems |
title_full_unstemmed |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems |
title_sort |
Wavelet B-Splines Bases on the Interval for Solving Boundary Value Problems |
dc.creator.none.fl_str_mv |
Calderón, Lucila Daniela Martín, María Teresa Vampa, Victoria Cristina Muszkats, Juan Pablo Seminara, Silvia Alejandra Troparevsky, María Inés |
author |
Calderón, Lucila Daniela |
author_facet |
Calderón, Lucila Daniela Martín, María Teresa Vampa, Victoria Cristina Muszkats, Juan Pablo Seminara, Silvia Alejandra Troparevsky, María Inés |
author_role |
author |
author2 |
Martín, María Teresa Vampa, Victoria Cristina Muszkats, Juan Pablo Seminara, Silvia Alejandra Troparevsky, María Inés |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ingeniería Matemática differential equations oscillatory functions Wavelet-Galerkin method |
topic |
Ingeniería Matemática differential equations oscillatory functions Wavelet-Galerkin method |
dc.description.none.fl_txt_mv |
The use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method. Facultad de Ingeniería |
description |
The use of multiresolution techniques and wavelets has become increa-singly popular in the development of numerical schemes for the solution of differential equations. Wavelet’s properties make them useful for developing hierarchical solutions to many engineering problems. They are well localized, oscillatory functions which provide a basis of the space of functions on the real line. We show the construction of derivative-orthogonal B-spline wavelets on the interval which have simple structure and provide sparse and well-conditioned matrices when they are used for solving differential equations with the wavelet-Galerkin method. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/134801 |
url |
http://sedici.unlp.edu.ar/handle/10915/134801 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-3-030-61713-4 info:eu-repo/semantics/altIdentifier/issn/2199-3041 info:eu-repo/semantics/altIdentifier/issn/2199-305x info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-61713-4_2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 23-40 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616197613551616 |
score |
13.070432 |