Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model

Autores
Liu, Zhengchun
Año de publicación
2017
Idioma
inglés
Tipo de recurso
reseña artículo
Estado
versión publicada
Descripción
Hospital based Emergency Departments (EDs) serve as the primary gateway to the acute healthcare system, are struggling to provide timely care to a steadily increasing number of unscheduled visits. It is a highly integrated service units that primarily handles the needs of the patients arriving without prior appointment, and with uncertain conditions. In this context, analysis and management of patient flows play a key role in developing policies and decision tools for overall performance improvement of the system. However, patient flows in EDs are considered to be very complex because of the different pathways patients may take and the inherent uncertainty and variability of healthcare processes. Due to the complexity and crucial role of an ED in the healthcare system, the ability to accurately represent, simulate and predict performance of ED is invaluable for decision makers to solve operations management problems. One way to realize this requirement is by modeling and simulation. In this thesis, we build high fidelity simulation tools to identify system bottleneck, quantitatively predict the benefit and cost of a policy, and discovery knowledge for a better understanding of the complex ED system. The agentbased model and simulation technique provides a flexible way to study ED operations as it predicts the systemlevel behavior from micro-level interactions, so as to see the forest through the trees. In this way, policies such as staffing could be changed and the effect on parameters such as waiting times and throughput could be quantified. Here, we use agent-based model and simulation techniques to model the interaction of ED components (i.e, patient, nurse, doctor, equipment etc.). We then applied high performance computing techniques to execute the model and analyze simulation results. In summary, armed with the ability to execute a compute-intensive model and analyze huge datasets, the overall goal of this study is to develop tools to better understand the complexity (explain), evaluate policy (predict) and improve efficiencies (optimize) of ED units.
Es revisión de: http://www.tesisenred.net/handle/10803/392743
Resumen de la tesis doctoral del autor defendida en la Universidad Autónoma de Barcelona el 22 de julio de 2016.
Facultad de Informática
Materia
Ciencias Informáticas
use agent-based model
Sistema Médico de Emergencia
Simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/59994

id SEDICI_24356121d79bcfe1ddf0d79904793da7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/59994
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based ModelLiu, ZhengchunCiencias Informáticasuse agent-based modelSistema Médico de EmergenciaSimulationHospital based Emergency Departments (EDs) serve as the primary gateway to the acute healthcare system, are struggling to provide timely care to a steadily increasing number of unscheduled visits. It is a highly integrated service units that primarily handles the needs of the patients arriving without prior appointment, and with uncertain conditions. In this context, analysis and management of patient flows play a key role in developing policies and decision tools for overall performance improvement of the system. However, patient flows in EDs are considered to be very complex because of the different pathways patients may take and the inherent uncertainty and variability of healthcare processes. Due to the complexity and crucial role of an ED in the healthcare system, the ability to accurately represent, simulate and predict performance of ED is invaluable for decision makers to solve operations management problems. One way to realize this requirement is by modeling and simulation. In this thesis, we build high fidelity simulation tools to identify system bottleneck, quantitatively predict the benefit and cost of a policy, and discovery knowledge for a better understanding of the complex ED system. The agentbased model and simulation technique provides a flexible way to study ED operations as it predicts the systemlevel behavior from micro-level interactions, so as to see the forest through the trees. In this way, policies such as staffing could be changed and the effect on parameters such as waiting times and throughput could be quantified. Here, we use agent-based model and simulation techniques to model the interaction of ED components (i.e, patient, nurse, doctor, equipment etc.). We then applied high performance computing techniques to execute the model and analyze simulation results. In summary, armed with the ability to execute a compute-intensive model and analyze huge datasets, the overall goal of this study is to develop tools to better understand the complexity (explain), evaluate policy (predict) and improve efficiencies (optimize) of ED units.Es revisión de: http://www.tesisenred.net/handle/10803/392743Resumen de la tesis doctoral del autor defendida en la Universidad Autónoma de Barcelona el 22 de julio de 2016.Facultad de Informática2017-04info:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionRevisionhttp://purl.org/coar/resource_type/c_dcae04bcinfo:ar-repo/semantics/resenaArticuloapplication/pdf87-88http://sedici.unlp.edu.ar/handle/10915/59994enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/2017/05/JCST-44-Thesis-Overview-2.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:48:38Zoai:sedici.unlp.edu.ar:10915/59994Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:48:38.37SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model
title Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model
spellingShingle Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model
Liu, Zhengchun
Ciencias Informáticas
use agent-based model
Sistema Médico de Emergencia
Simulation
title_short Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model
title_full Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model
title_fullStr Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model
title_full_unstemmed Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model
title_sort Modeling and Simulation for Healthcare Operations Management using High Performance Computing and Agent-Based Model
dc.creator.none.fl_str_mv Liu, Zhengchun
author Liu, Zhengchun
author_facet Liu, Zhengchun
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
use agent-based model
Sistema Médico de Emergencia
Simulation
topic Ciencias Informáticas
use agent-based model
Sistema Médico de Emergencia
Simulation
dc.description.none.fl_txt_mv Hospital based Emergency Departments (EDs) serve as the primary gateway to the acute healthcare system, are struggling to provide timely care to a steadily increasing number of unscheduled visits. It is a highly integrated service units that primarily handles the needs of the patients arriving without prior appointment, and with uncertain conditions. In this context, analysis and management of patient flows play a key role in developing policies and decision tools for overall performance improvement of the system. However, patient flows in EDs are considered to be very complex because of the different pathways patients may take and the inherent uncertainty and variability of healthcare processes. Due to the complexity and crucial role of an ED in the healthcare system, the ability to accurately represent, simulate and predict performance of ED is invaluable for decision makers to solve operations management problems. One way to realize this requirement is by modeling and simulation. In this thesis, we build high fidelity simulation tools to identify system bottleneck, quantitatively predict the benefit and cost of a policy, and discovery knowledge for a better understanding of the complex ED system. The agentbased model and simulation technique provides a flexible way to study ED operations as it predicts the systemlevel behavior from micro-level interactions, so as to see the forest through the trees. In this way, policies such as staffing could be changed and the effect on parameters such as waiting times and throughput could be quantified. Here, we use agent-based model and simulation techniques to model the interaction of ED components (i.e, patient, nurse, doctor, equipment etc.). We then applied high performance computing techniques to execute the model and analyze simulation results. In summary, armed with the ability to execute a compute-intensive model and analyze huge datasets, the overall goal of this study is to develop tools to better understand the complexity (explain), evaluate policy (predict) and improve efficiencies (optimize) of ED units.
Es revisión de: http://www.tesisenred.net/handle/10803/392743
Resumen de la tesis doctoral del autor defendida en la Universidad Autónoma de Barcelona el 22 de julio de 2016.
Facultad de Informática
description Hospital based Emergency Departments (EDs) serve as the primary gateway to the acute healthcare system, are struggling to provide timely care to a steadily increasing number of unscheduled visits. It is a highly integrated service units that primarily handles the needs of the patients arriving without prior appointment, and with uncertain conditions. In this context, analysis and management of patient flows play a key role in developing policies and decision tools for overall performance improvement of the system. However, patient flows in EDs are considered to be very complex because of the different pathways patients may take and the inherent uncertainty and variability of healthcare processes. Due to the complexity and crucial role of an ED in the healthcare system, the ability to accurately represent, simulate and predict performance of ED is invaluable for decision makers to solve operations management problems. One way to realize this requirement is by modeling and simulation. In this thesis, we build high fidelity simulation tools to identify system bottleneck, quantitatively predict the benefit and cost of a policy, and discovery knowledge for a better understanding of the complex ED system. The agentbased model and simulation technique provides a flexible way to study ED operations as it predicts the systemlevel behavior from micro-level interactions, so as to see the forest through the trees. In this way, policies such as staffing could be changed and the effect on parameters such as waiting times and throughput could be quantified. Here, we use agent-based model and simulation techniques to model the interaction of ED components (i.e, patient, nurse, doctor, equipment etc.). We then applied high performance computing techniques to execute the model and analyze simulation results. In summary, armed with the ability to execute a compute-intensive model and analyze huge datasets, the overall goal of this study is to develop tools to better understand the complexity (explain), evaluate policy (predict) and improve efficiencies (optimize) of ED units.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/review
info:eu-repo/semantics/publishedVersion
Revision
http://purl.org/coar/resource_type/c_dcae04bc
info:ar-repo/semantics/resenaArticulo
format review
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/59994
url http://sedici.unlp.edu.ar/handle/10915/59994
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/2017/05/JCST-44-Thesis-Overview-2.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.format.none.fl_str_mv application/pdf
87-88
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783027395428352
score 12.982451