Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC
- Autores
- Alconada Verzini, María Josefina; Alonso, Francisco; Arduh, Francisco Anuar; Dova, María Teresa; Hoya, Joaquín; Monticelli, Fernando Gabriel; Orellana, Gonzalo Enrique; Wahlberg, Hernán Pablo; The ATLAS Collaboration
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb - 1 for the tt¯ and γ+ jet and 36.7 fb - 1 for the dijet event topologies. © 2019, CERN for the benefit of the ATLAS collaboration.
La lista completa de autores puede verse en el archivo asociado.
Instituto de Física La Plata - Materia
-
Física
Particle physics
Physics
Jet (particle physics)
Top quark
Atlas (anatomy)
Atlas experiment
Particle identification
Quark
Boson
Large hadron collider - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/124624
Ver los metadatos del registro completo
id |
SEDICI_23afc6e185976d591e524e8a32af5ffb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/124624 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHCAlconada Verzini, María JosefinaAlonso, FranciscoArduh, Francisco AnuarDova, María TeresaHoya, JoaquínMonticelli, Fernando GabrielOrellana, Gonzalo EnriqueWahlberg, Hernán PabloThe ATLAS CollaborationFísicaParticle physicsPhysicsJet (particle physics)Top quarkAtlas (anatomy)Atlas experimentParticle identificationQuarkBosonLarge hadron colliderThe performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb - 1 for the tt¯ and γ+ jet and 36.7 fb - 1 for the dijet event topologies. © 2019, CERN for the benefit of the ATLAS collaboration.La lista completa de autores puede verse en el archivo asociado.Instituto de Física La Plata2019-04-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/124624enginfo:eu-repo/semantics/altIdentifier/issn/1434-6044info:eu-repo/semantics/altIdentifier/issn/1434-6052info:eu-repo/semantics/altIdentifier/arxiv/1808.07858info:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-019-6847-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:53Zoai:sedici.unlp.edu.ar:10915/124624Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:53.675SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC |
title |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC |
spellingShingle |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC Alconada Verzini, María Josefina Física Particle physics Physics Jet (particle physics) Top quark Atlas (anatomy) Atlas experiment Particle identification Quark Boson Large hadron collider |
title_short |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC |
title_full |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC |
title_fullStr |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC |
title_full_unstemmed |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC |
title_sort |
Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC |
dc.creator.none.fl_str_mv |
Alconada Verzini, María Josefina Alonso, Francisco Arduh, Francisco Anuar Dova, María Teresa Hoya, Joaquín Monticelli, Fernando Gabriel Orellana, Gonzalo Enrique Wahlberg, Hernán Pablo The ATLAS Collaboration |
author |
Alconada Verzini, María Josefina |
author_facet |
Alconada Verzini, María Josefina Alonso, Francisco Arduh, Francisco Anuar Dova, María Teresa Hoya, Joaquín Monticelli, Fernando Gabriel Orellana, Gonzalo Enrique Wahlberg, Hernán Pablo The ATLAS Collaboration |
author_role |
author |
author2 |
Alonso, Francisco Arduh, Francisco Anuar Dova, María Teresa Hoya, Joaquín Monticelli, Fernando Gabriel Orellana, Gonzalo Enrique Wahlberg, Hernán Pablo The ATLAS Collaboration |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Física Particle physics Physics Jet (particle physics) Top quark Atlas (anatomy) Atlas experiment Particle identification Quark Boson Large hadron collider |
topic |
Física Particle physics Physics Jet (particle physics) Top quark Atlas (anatomy) Atlas experiment Particle identification Quark Boson Large hadron collider |
dc.description.none.fl_txt_mv |
The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb - 1 for the tt¯ and γ+ jet and 36.7 fb - 1 for the dijet event topologies. © 2019, CERN for the benefit of the ATLAS collaboration. La lista completa de autores puede verse en el archivo asociado. Instituto de Física La Plata |
description |
The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb - 1 for the tt¯ and γ+ jet and 36.7 fb - 1 for the dijet event topologies. © 2019, CERN for the benefit of the ATLAS collaboration. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/124624 |
url |
http://sedici.unlp.edu.ar/handle/10915/124624 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1434-6044 info:eu-repo/semantics/altIdentifier/issn/1434-6052 info:eu-repo/semantics/altIdentifier/arxiv/1808.07858 info:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-019-6847-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616178046074880 |
score |
13.070432 |