Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart
- Autores
- Valverde, Carlos Alfredo; Mundiña-Weilenmann, Cecilia; Reyes, Mariano; Kranias, Evangelia G.; Escobar, Ariel L.; Mattiazzi, Alicia Ramona
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective: To investigate the importance of the phosphorylation of Ser16 and Thr17 sites of phospholamban (PLN) on intracellular Ca2+ (Cai2+) handling and contractile recovery of the stunned myocardium. Methods: Cai2+ (Rhod-2, pulsed local-field fluorescence microscopy) and contractility (isovolumic left ventricular developed pressure, LVDP) were simultaneously measured in Langendorff perfused hearts from transgenic mice expressing either intact PLN (PLN-WT) or PLN with both phosphorylation sites mutated to Ala (PLN-DM), subjected to 12 min of global ischemia followed by a reperfusion period of 30 min. Results: Pre-ischemic values of Cai2+ and LVDP were similar in both groups. In PLN-WT, a transient increase in Thr17 phosphorylation at early reperfusion preceded a recovery of Ca2+ transient amplitude, virtually completed by the end of reperfusion. LVDP at 30 min reperfusion was 67.9 ± 7.6% of pre-ischemic values, n = 14. In contrast, in PLN-DM, there was a poor recovery of Cai2+ transient amplitude and LVDP was significantly lower (28.3 ± 6.7%, n = 11, 30 min reperfusion) than in PLN-WT hearts. Although myofilament Ca2+ responsiveness and troponin I (TnI) degradation did not differ between groups, the episodes of mechanical alternans, typical of Cai2+ overload, were significantly prolonged in PLN-DM vs. PLN-WT hearts. Conclusions: PLN phosphorylation appears to be crucial for the mechanical and Cai2+ recovery during stunning and protective against the mechanical abnormalities typical of Cai2+ overload. The importance of PLN phosphorylation would primarily reside in the Thr17 residue, which is phosphorylated during the critical early phase of reperfusion. Our results emphasize that, although ablation of PLN phosphorylation does not affect basal contractility, it does alter Ca2+ handling and mechanical performance under stress situations.
Facultad de Ciencias Médicas - Materia
-
Ciencias Médicas
Intracellular calcium
Ischemia-reperfusion
Myofibrillar proteins
Phospholamban mutants
Phospholamban phosphorylation residues - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83099
Ver los metadatos del registro completo
id |
SEDICI_21cbe202bdc27eecb4fb10f3e18a863e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83099 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heartValverde, Carlos AlfredoMundiña-Weilenmann, CeciliaReyes, MarianoKranias, Evangelia G.Escobar, Ariel L.Mattiazzi, Alicia RamonaCiencias MédicasIntracellular calciumIschemia-reperfusionMyofibrillar proteinsPhospholamban mutantsPhospholamban phosphorylation residuesObjective: To investigate the importance of the phosphorylation of Ser16 and Thr17 sites of phospholamban (PLN) on intracellular Ca2+ (Cai2+) handling and contractile recovery of the stunned myocardium. Methods: Cai2+ (Rhod-2, pulsed local-field fluorescence microscopy) and contractility (isovolumic left ventricular developed pressure, LVDP) were simultaneously measured in Langendorff perfused hearts from transgenic mice expressing either intact PLN (PLN-WT) or PLN with both phosphorylation sites mutated to Ala (PLN-DM), subjected to 12 min of global ischemia followed by a reperfusion period of 30 min. Results: Pre-ischemic values of Cai2+ and LVDP were similar in both groups. In PLN-WT, a transient increase in Thr17 phosphorylation at early reperfusion preceded a recovery of Ca2+ transient amplitude, virtually completed by the end of reperfusion. LVDP at 30 min reperfusion was 67.9 ± 7.6% of pre-ischemic values, n = 14. In contrast, in PLN-DM, there was a poor recovery of Cai2+ transient amplitude and LVDP was significantly lower (28.3 ± 6.7%, n = 11, 30 min reperfusion) than in PLN-WT hearts. Although myofilament Ca2+ responsiveness and troponin I (TnI) degradation did not differ between groups, the episodes of mechanical alternans, typical of Cai2+ overload, were significantly prolonged in PLN-DM vs. PLN-WT hearts. Conclusions: PLN phosphorylation appears to be crucial for the mechanical and Cai2+ recovery during stunning and protective against the mechanical abnormalities typical of Cai2+ overload. The importance of PLN phosphorylation would primarily reside in the Thr17 residue, which is phosphorylated during the critical early phase of reperfusion. Our results emphasize that, although ablation of PLN phosphorylation does not affect basal contractility, it does alter Ca2+ handling and mechanical performance under stress situations.Facultad de Ciencias Médicas2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf335-345http://sedici.unlp.edu.ar/handle/10915/83099enginfo:eu-repo/semantics/altIdentifier/issn/0008-6363info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cardiores.2006.01.018info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:45Zoai:sedici.unlp.edu.ar:10915/83099Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:46.11SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart |
title |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart |
spellingShingle |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart Valverde, Carlos Alfredo Ciencias Médicas Intracellular calcium Ischemia-reperfusion Myofibrillar proteins Phospholamban mutants Phospholamban phosphorylation residues |
title_short |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart |
title_full |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart |
title_fullStr |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart |
title_full_unstemmed |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart |
title_sort |
Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart |
dc.creator.none.fl_str_mv |
Valverde, Carlos Alfredo Mundiña-Weilenmann, Cecilia Reyes, Mariano Kranias, Evangelia G. Escobar, Ariel L. Mattiazzi, Alicia Ramona |
author |
Valverde, Carlos Alfredo |
author_facet |
Valverde, Carlos Alfredo Mundiña-Weilenmann, Cecilia Reyes, Mariano Kranias, Evangelia G. Escobar, Ariel L. Mattiazzi, Alicia Ramona |
author_role |
author |
author2 |
Mundiña-Weilenmann, Cecilia Reyes, Mariano Kranias, Evangelia G. Escobar, Ariel L. Mattiazzi, Alicia Ramona |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Médicas Intracellular calcium Ischemia-reperfusion Myofibrillar proteins Phospholamban mutants Phospholamban phosphorylation residues |
topic |
Ciencias Médicas Intracellular calcium Ischemia-reperfusion Myofibrillar proteins Phospholamban mutants Phospholamban phosphorylation residues |
dc.description.none.fl_txt_mv |
Objective: To investigate the importance of the phosphorylation of Ser16 and Thr17 sites of phospholamban (PLN) on intracellular Ca2+ (Cai2+) handling and contractile recovery of the stunned myocardium. Methods: Cai2+ (Rhod-2, pulsed local-field fluorescence microscopy) and contractility (isovolumic left ventricular developed pressure, LVDP) were simultaneously measured in Langendorff perfused hearts from transgenic mice expressing either intact PLN (PLN-WT) or PLN with both phosphorylation sites mutated to Ala (PLN-DM), subjected to 12 min of global ischemia followed by a reperfusion period of 30 min. Results: Pre-ischemic values of Cai2+ and LVDP were similar in both groups. In PLN-WT, a transient increase in Thr17 phosphorylation at early reperfusion preceded a recovery of Ca2+ transient amplitude, virtually completed by the end of reperfusion. LVDP at 30 min reperfusion was 67.9 ± 7.6% of pre-ischemic values, n = 14. In contrast, in PLN-DM, there was a poor recovery of Cai2+ transient amplitude and LVDP was significantly lower (28.3 ± 6.7%, n = 11, 30 min reperfusion) than in PLN-WT hearts. Although myofilament Ca2+ responsiveness and troponin I (TnI) degradation did not differ between groups, the episodes of mechanical alternans, typical of Cai2+ overload, were significantly prolonged in PLN-DM vs. PLN-WT hearts. Conclusions: PLN phosphorylation appears to be crucial for the mechanical and Cai2+ recovery during stunning and protective against the mechanical abnormalities typical of Cai2+ overload. The importance of PLN phosphorylation would primarily reside in the Thr17 residue, which is phosphorylated during the critical early phase of reperfusion. Our results emphasize that, although ablation of PLN phosphorylation does not affect basal contractility, it does alter Ca2+ handling and mechanical performance under stress situations. Facultad de Ciencias Médicas |
description |
Objective: To investigate the importance of the phosphorylation of Ser16 and Thr17 sites of phospholamban (PLN) on intracellular Ca2+ (Cai2+) handling and contractile recovery of the stunned myocardium. Methods: Cai2+ (Rhod-2, pulsed local-field fluorescence microscopy) and contractility (isovolumic left ventricular developed pressure, LVDP) were simultaneously measured in Langendorff perfused hearts from transgenic mice expressing either intact PLN (PLN-WT) or PLN with both phosphorylation sites mutated to Ala (PLN-DM), subjected to 12 min of global ischemia followed by a reperfusion period of 30 min. Results: Pre-ischemic values of Cai2+ and LVDP were similar in both groups. In PLN-WT, a transient increase in Thr17 phosphorylation at early reperfusion preceded a recovery of Ca2+ transient amplitude, virtually completed by the end of reperfusion. LVDP at 30 min reperfusion was 67.9 ± 7.6% of pre-ischemic values, n = 14. In contrast, in PLN-DM, there was a poor recovery of Cai2+ transient amplitude and LVDP was significantly lower (28.3 ± 6.7%, n = 11, 30 min reperfusion) than in PLN-WT hearts. Although myofilament Ca2+ responsiveness and troponin I (TnI) degradation did not differ between groups, the episodes of mechanical alternans, typical of Cai2+ overload, were significantly prolonged in PLN-DM vs. PLN-WT hearts. Conclusions: PLN phosphorylation appears to be crucial for the mechanical and Cai2+ recovery during stunning and protective against the mechanical abnormalities typical of Cai2+ overload. The importance of PLN phosphorylation would primarily reside in the Thr17 residue, which is phosphorylated during the critical early phase of reperfusion. Our results emphasize that, although ablation of PLN phosphorylation does not affect basal contractility, it does alter Ca2+ handling and mechanical performance under stress situations. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83099 |
url |
http://sedici.unlp.edu.ar/handle/10915/83099 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0008-6363 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cardiores.2006.01.018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 335-345 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616029793157120 |
score |
13.070432 |