MCPC and MCMP Evolutionary Algorithms for the TSP
- Autores
- Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida B.
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The Travelling Salesman Problem (TSP) is an NP-complete problem that has to be solved with optimisation tools, such as the evolutionary algorithms (EA). There are various ways of representing the TSP tours through EAs. Two of the most often employed genetic representations are the ordinal and path representations. In this work we present several EAs based on those representations combined with different crossover operators, namely Single Crossover Per Couple (SCPC), Multiple Crossover Per Couple (MCPC) and Multiple Crossover with Multiple Parents (MCMP). The implementations were tested for several academic case studies generated at random. The EAs with MCPC exhibited the best performance, while the MCMP variants yielded premature convergence problems.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Travelling Salesman Problem
evolutionary algorithms
Single Crossover Per Couple - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/184871
Ver los metadatos del registro completo
id |
SEDICI_1a61fd07ee7f1366ff19452f760cde15 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/184871 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
MCPC and MCMP Evolutionary Algorithms for the TSPCarballido, Jessica AndreaPonzoni, IgnacioBrignole, Nélida B.Ciencias InformáticasTravelling Salesman Problemevolutionary algorithmsSingle Crossover Per CoupleThe Travelling Salesman Problem (TSP) is an NP-complete problem that has to be solved with optimisation tools, such as the evolutionary algorithms (EA). There are various ways of representing the TSP tours through EAs. Two of the most often employed genetic representations are the ordinal and path representations. In this work we present several EAs based on those representations combined with different crossover operators, namely Single Crossover Per Couple (SCPC), Multiple Crossover Per Couple (MCPC) and Multiple Crossover with Multiple Parents (MCMP). The implementations were tested for several academic case studies generated at random. The EAs with MCPC exhibited the best performance, while the MCMP variants yielded premature convergence problems.Sociedad Argentina de Informática e Investigación Operativa2003-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/184871enginfo:eu-repo/semantics/altIdentifier/issn/1666-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:31:35Zoai:sedici.unlp.edu.ar:10915/184871Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:31:35.392SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
MCPC and MCMP Evolutionary Algorithms for the TSP |
title |
MCPC and MCMP Evolutionary Algorithms for the TSP |
spellingShingle |
MCPC and MCMP Evolutionary Algorithms for the TSP Carballido, Jessica Andrea Ciencias Informáticas Travelling Salesman Problem evolutionary algorithms Single Crossover Per Couple |
title_short |
MCPC and MCMP Evolutionary Algorithms for the TSP |
title_full |
MCPC and MCMP Evolutionary Algorithms for the TSP |
title_fullStr |
MCPC and MCMP Evolutionary Algorithms for the TSP |
title_full_unstemmed |
MCPC and MCMP Evolutionary Algorithms for the TSP |
title_sort |
MCPC and MCMP Evolutionary Algorithms for the TSP |
dc.creator.none.fl_str_mv |
Carballido, Jessica Andrea Ponzoni, Ignacio Brignole, Nélida B. |
author |
Carballido, Jessica Andrea |
author_facet |
Carballido, Jessica Andrea Ponzoni, Ignacio Brignole, Nélida B. |
author_role |
author |
author2 |
Ponzoni, Ignacio Brignole, Nélida B. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Travelling Salesman Problem evolutionary algorithms Single Crossover Per Couple |
topic |
Ciencias Informáticas Travelling Salesman Problem evolutionary algorithms Single Crossover Per Couple |
dc.description.none.fl_txt_mv |
The Travelling Salesman Problem (TSP) is an NP-complete problem that has to be solved with optimisation tools, such as the evolutionary algorithms (EA). There are various ways of representing the TSP tours through EAs. Two of the most often employed genetic representations are the ordinal and path representations. In this work we present several EAs based on those representations combined with different crossover operators, namely Single Crossover Per Couple (SCPC), Multiple Crossover Per Couple (MCPC) and Multiple Crossover with Multiple Parents (MCMP). The implementations were tested for several academic case studies generated at random. The EAs with MCPC exhibited the best performance, while the MCMP variants yielded premature convergence problems. Sociedad Argentina de Informática e Investigación Operativa |
description |
The Travelling Salesman Problem (TSP) is an NP-complete problem that has to be solved with optimisation tools, such as the evolutionary algorithms (EA). There are various ways of representing the TSP tours through EAs. Two of the most often employed genetic representations are the ordinal and path representations. In this work we present several EAs based on those representations combined with different crossover operators, namely Single Crossover Per Couple (SCPC), Multiple Crossover Per Couple (MCPC) and Multiple Crossover with Multiple Parents (MCMP). The implementations were tested for several academic case studies generated at random. The EAs with MCPC exhibited the best performance, while the MCMP variants yielded premature convergence problems. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/184871 |
url |
http://sedici.unlp.edu.ar/handle/10915/184871 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1666-1079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783824091938816 |
score |
12.982451 |