Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software
- Autores
- Amatriain, Hernán Guillermo
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- tesis de maestría
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Bertone, Rodolfo Alfredo
Dieste, Oscar (asesor científico)
Fernández, Enrique - Descripción
- Antecedentes: la síntesis cuantitativa consiste en integrar los resultados de un conjunto de experimentos, previamente identificados, en una medida resumen. Al realizar este tipo de síntesis, se busca hallar un resultado que sea resumen representativo de los resultados de los estudios individuales, y por tanto que signifique una mejora sobre las estimaciones individuales. Este tipo de procedimientos recibe el nombre de Agregación o Meta-Análisis. Existen dos estrategias a la hora de agregar un conjunto de experimentos, la primera parte del supuesto de que las diferencias en los resultados de un experimento a otro obedecen a un error aleatorio propio de la experimentación y de que existe un único resultado o tamaño de efecto que es compartido por toda la población, la segunda estrategia parte del supuesto de que no existe un único tamaño de efecto representativo de toda la población, sino que dependiendo del origen o momento en que se realicen los experimentos los resultados van a modificarse debido a la influencia de variables no controladas, a pesar de esto puede obtenerse un promedio de los distintos resultados para una conclusión general. A la primera de las estrategias se la denominada modelo de efecto fijo y a la segunda se la denominada modelo de efectos aleatorios. Los autores que han comenzado a trabajar en Meta-Análisis, no muestran una línea de trabajo unificada. Este hecho hace que sea necesaria la unificación de criterios para la realización de este tipo de trabajos. Objetivo: establecer un conjunto de recomendaciones o guías que permitan, a los investigadores en Ingeniería del Software, determinar bajo qué condiciones es conveniente desarrollar un Meta-Análisis mediante modelo de efecto fijo y cuando es conveniente utilizar el modelo de efectos aleatorios. Métodos: la estrategia sería la de obtener los resultados de experimentos de características similares mediante el método de Monte Carlo. Todos ellos contarían con un número de sujetos bajo, ya que esa es la característica principal en el campo de la Ingeniería de Software y que genera la necesidad de tener que agregar el resultado de varios experimentos. Luego se agrega el resultado de estos experimentos con el método de Diferencia de Medias Ponderadas aplicada primero con el modelo de efecto fijo, y posteriormente con el modelo de efectos aleatorios. Con las combinaciones realizadas, se analiza y compara la fiabilidad y potencia estadística de ambos modelos de efectos.
Magister en Ingeniería de Software
Universidad Nacional de La Plata
Facultad de Informática - Materia
-
Ciencias Informáticas
Software
agregación de experimentos
Performance Analysis and Design Aids
Monte Carlo
síntesis cuantitativa
meta análisis
diferencia de medias ponderadas
modelo de efecto fijo
modelo de efectos aleatorios - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/44268
Ver los metadatos del registro completo
id |
SEDICI_16c221f6bd1be73d50275c67ac36925f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/44268 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del SoftwareAmatriain, Hernán GuillermoCiencias InformáticasSoftwareagregación de experimentosPerformance Analysis and Design AidsMonte Carlosíntesis cuantitativameta análisisdiferencia de medias ponderadasmodelo de efecto fijomodelo de efectos aleatoriosAntecedentes: la síntesis cuantitativa consiste en integrar los resultados de un conjunto de experimentos, previamente identificados, en una medida resumen. Al realizar este tipo de síntesis, se busca hallar un resultado que sea resumen representativo de los resultados de los estudios individuales, y por tanto que signifique una mejora sobre las estimaciones individuales. Este tipo de procedimientos recibe el nombre de Agregación o Meta-Análisis. Existen dos estrategias a la hora de agregar un conjunto de experimentos, la primera parte del supuesto de que las diferencias en los resultados de un experimento a otro obedecen a un error aleatorio propio de la experimentación y de que existe un único resultado o tamaño de efecto que es compartido por toda la población, la segunda estrategia parte del supuesto de que no existe un único tamaño de efecto representativo de toda la población, sino que dependiendo del origen o momento en que se realicen los experimentos los resultados van a modificarse debido a la influencia de variables no controladas, a pesar de esto puede obtenerse un promedio de los distintos resultados para una conclusión general. A la primera de las estrategias se la denominada modelo de efecto fijo y a la segunda se la denominada modelo de efectos aleatorios. Los autores que han comenzado a trabajar en Meta-Análisis, no muestran una línea de trabajo unificada. Este hecho hace que sea necesaria la unificación de criterios para la realización de este tipo de trabajos. Objetivo: establecer un conjunto de recomendaciones o guías que permitan, a los investigadores en Ingeniería del Software, determinar bajo qué condiciones es conveniente desarrollar un Meta-Análisis mediante modelo de efecto fijo y cuando es conveniente utilizar el modelo de efectos aleatorios. Métodos: la estrategia sería la de obtener los resultados de experimentos de características similares mediante el método de Monte Carlo. Todos ellos contarían con un número de sujetos bajo, ya que esa es la característica principal en el campo de la Ingeniería de Software y que genera la necesidad de tener que agregar el resultado de varios experimentos. Luego se agrega el resultado de estos experimentos con el método de Diferencia de Medias Ponderadas aplicada primero con el modelo de efecto fijo, y posteriormente con el modelo de efectos aleatorios. Con las combinaciones realizadas, se analiza y compara la fiabilidad y potencia estadística de ambos modelos de efectos.Magister en Ingeniería de SoftwareUniversidad Nacional de La PlataFacultad de InformáticaBertone, Rodolfo AlfredoDieste, Oscar (asesor científico)Fernández, Enrique2014-12-05info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTesis de maestriahttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/44268https://doi.org/10.35537/10915/44268spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar/Creative Commons Attribution 2.5 Argentina (CC BY 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:01:58Zoai:sedici.unlp.edu.ar:10915/44268Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:01:58.452SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software |
title |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software |
spellingShingle |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software Amatriain, Hernán Guillermo Ciencias Informáticas Software agregación de experimentos Performance Analysis and Design Aids Monte Carlo síntesis cuantitativa meta análisis diferencia de medias ponderadas modelo de efecto fijo modelo de efectos aleatorios |
title_short |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software |
title_full |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software |
title_fullStr |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software |
title_full_unstemmed |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software |
title_sort |
Establecimiento del Modelo de Agregación más apropiado para Ingeniería del Software |
dc.creator.none.fl_str_mv |
Amatriain, Hernán Guillermo |
author |
Amatriain, Hernán Guillermo |
author_facet |
Amatriain, Hernán Guillermo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bertone, Rodolfo Alfredo Dieste, Oscar (asesor científico) Fernández, Enrique |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Software agregación de experimentos Performance Analysis and Design Aids Monte Carlo síntesis cuantitativa meta análisis diferencia de medias ponderadas modelo de efecto fijo modelo de efectos aleatorios |
topic |
Ciencias Informáticas Software agregación de experimentos Performance Analysis and Design Aids Monte Carlo síntesis cuantitativa meta análisis diferencia de medias ponderadas modelo de efecto fijo modelo de efectos aleatorios |
dc.description.none.fl_txt_mv |
Antecedentes: la síntesis cuantitativa consiste en integrar los resultados de un conjunto de experimentos, previamente identificados, en una medida resumen. Al realizar este tipo de síntesis, se busca hallar un resultado que sea resumen representativo de los resultados de los estudios individuales, y por tanto que signifique una mejora sobre las estimaciones individuales. Este tipo de procedimientos recibe el nombre de Agregación o Meta-Análisis. Existen dos estrategias a la hora de agregar un conjunto de experimentos, la primera parte del supuesto de que las diferencias en los resultados de un experimento a otro obedecen a un error aleatorio propio de la experimentación y de que existe un único resultado o tamaño de efecto que es compartido por toda la población, la segunda estrategia parte del supuesto de que no existe un único tamaño de efecto representativo de toda la población, sino que dependiendo del origen o momento en que se realicen los experimentos los resultados van a modificarse debido a la influencia de variables no controladas, a pesar de esto puede obtenerse un promedio de los distintos resultados para una conclusión general. A la primera de las estrategias se la denominada modelo de efecto fijo y a la segunda se la denominada modelo de efectos aleatorios. Los autores que han comenzado a trabajar en Meta-Análisis, no muestran una línea de trabajo unificada. Este hecho hace que sea necesaria la unificación de criterios para la realización de este tipo de trabajos. Objetivo: establecer un conjunto de recomendaciones o guías que permitan, a los investigadores en Ingeniería del Software, determinar bajo qué condiciones es conveniente desarrollar un Meta-Análisis mediante modelo de efecto fijo y cuando es conveniente utilizar el modelo de efectos aleatorios. Métodos: la estrategia sería la de obtener los resultados de experimentos de características similares mediante el método de Monte Carlo. Todos ellos contarían con un número de sujetos bajo, ya que esa es la característica principal en el campo de la Ingeniería de Software y que genera la necesidad de tener que agregar el resultado de varios experimentos. Luego se agrega el resultado de estos experimentos con el método de Diferencia de Medias Ponderadas aplicada primero con el modelo de efecto fijo, y posteriormente con el modelo de efectos aleatorios. Con las combinaciones realizadas, se analiza y compara la fiabilidad y potencia estadística de ambos modelos de efectos. Magister en Ingeniería de Software Universidad Nacional de La Plata Facultad de Informática |
description |
Antecedentes: la síntesis cuantitativa consiste en integrar los resultados de un conjunto de experimentos, previamente identificados, en una medida resumen. Al realizar este tipo de síntesis, se busca hallar un resultado que sea resumen representativo de los resultados de los estudios individuales, y por tanto que signifique una mejora sobre las estimaciones individuales. Este tipo de procedimientos recibe el nombre de Agregación o Meta-Análisis. Existen dos estrategias a la hora de agregar un conjunto de experimentos, la primera parte del supuesto de que las diferencias en los resultados de un experimento a otro obedecen a un error aleatorio propio de la experimentación y de que existe un único resultado o tamaño de efecto que es compartido por toda la población, la segunda estrategia parte del supuesto de que no existe un único tamaño de efecto representativo de toda la población, sino que dependiendo del origen o momento en que se realicen los experimentos los resultados van a modificarse debido a la influencia de variables no controladas, a pesar de esto puede obtenerse un promedio de los distintos resultados para una conclusión general. A la primera de las estrategias se la denominada modelo de efecto fijo y a la segunda se la denominada modelo de efectos aleatorios. Los autores que han comenzado a trabajar en Meta-Análisis, no muestran una línea de trabajo unificada. Este hecho hace que sea necesaria la unificación de criterios para la realización de este tipo de trabajos. Objetivo: establecer un conjunto de recomendaciones o guías que permitan, a los investigadores en Ingeniería del Software, determinar bajo qué condiciones es conveniente desarrollar un Meta-Análisis mediante modelo de efecto fijo y cuando es conveniente utilizar el modelo de efectos aleatorios. Métodos: la estrategia sería la de obtener los resultados de experimentos de características similares mediante el método de Monte Carlo. Todos ellos contarían con un número de sujetos bajo, ya que esa es la característica principal en el campo de la Ingeniería de Software y que genera la necesidad de tener que agregar el resultado de varios experimentos. Luego se agrega el resultado de estos experimentos con el método de Diferencia de Medias Ponderadas aplicada primero con el modelo de efecto fijo, y posteriormente con el modelo de efectos aleatorios. Con las combinaciones realizadas, se analiza y compara la fiabilidad y potencia estadística de ambos modelos de efectos. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis info:eu-repo/semantics/acceptedVersion Tesis de maestria http://purl.org/coar/resource_type/c_bdcc info:ar-repo/semantics/tesisDeMaestria |
format |
masterThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/44268 https://doi.org/10.35537/10915/44268 |
url |
http://sedici.unlp.edu.ar/handle/10915/44268 https://doi.org/10.35537/10915/44268 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar/ Creative Commons Attribution 2.5 Argentina (CC BY 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar/ Creative Commons Attribution 2.5 Argentina (CC BY 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615886899511296 |
score |
13.070432 |