Implementation of a Deformation Model for Pressure Tubes under Irradiation

Autores
Ramos Nervi, Juan E.; Idiart, Martin I.; Signorelli, Javier W.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Current semi-empiric deformation models for in-reactor deformation of Zr2.5Nb CANDU pressure tubes are based on the physical model of Christodoulou et al. (Proc. 11th Int. Symp. Zirc. Nucl. Ind., ASTM STP 1295 (1996), p. 518) and consider material texture effects via the code'SELFPOLY' introduced by Tomé et al. (Philos. Mag. A67 (1993), p. 917) and Turner et al. (Philos. Mag. A 79 (1999), p. 2505). This code makes use of a 'tangent' self-consistent approach proposed by Molinari et al. (Acta Metall. 35 (1987), p. 2983) to obtain the overall response of a viscoplastic polycrystalline system in terms of the local response of the single crystals and their microstructuralmorphology. More recently, Liu and Ponte Castañeda (J. Mech. Phys. Solids 52 (2004), p. 467)derived a 'generalized-secant' self-consistent approach which has been found to improve substantially on the earlier 'tangent' approach in some cases. In this work we study the influence of the linearization procedure on the predictions for the deformation of pressure tubes. The calculations are carried out by means of the VPSC code of Lebensohn et al. (14th International Conference on Textures of Materials 495-497 (2005), p. 955). It is found that the predictions based on the 'tangent' and 'generalized-secant' approaches are quite similar, and hence the use of a 'generalized-secant' approach is not recommended for this particular problem in view of its higher computational cost. Moreover, analyzing the current in-reactor deformation model reviewed by Holt (J. Nucl. Mat. 372 (2008), p. 182), a restriction in the stress state was found. The stress tensor components are projected to the material axes that are not guaranteed to be principal, for that reason the constitutive laws are not valid for a general stress state neglecting in particular the gravity forces. Based on the same constitutive law structure, a modification is proposed that accounts for a general stress state via coupling VPSC-FEM codes.
Publicado en: Mecánica Computacional vol. XXXV no.32
Facultad de Ingeniería
Materia
Ingeniería
Thermal Creep
CANDU
Growth
Pressure Tube
Irradiation Creep
VPSC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/105217

id SEDICI_13971a823a7bf458f320edd4ebdadd77
oai_identifier_str oai:sedici.unlp.edu.ar:10915/105217
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Implementation of a Deformation Model for Pressure Tubes under IrradiationRamos Nervi, Juan E.Idiart, Martin I.Signorelli, Javier W.IngenieríaThermal CreepCANDUGrowthPressure TubeIrradiation CreepVPSCCurrent semi-empiric deformation models for in-reactor deformation of Zr2.5Nb CANDU pressure tubes are based on the physical model of Christodoulou et al. (Proc. 11th Int. Symp. Zirc. Nucl. Ind., ASTM STP 1295 (1996), p. 518) and consider material texture effects via the code'SELFPOLY' introduced by Tomé et al. (Philos. Mag. A67 (1993), p. 917) and Turner et al. (Philos. Mag. A 79 (1999), p. 2505). This code makes use of a 'tangent' self-consistent approach proposed by Molinari et al. (Acta Metall. 35 (1987), p. 2983) to obtain the overall response of a viscoplastic polycrystalline system in terms of the local response of the single crystals and their microstructuralmorphology. More recently, Liu and Ponte Castañeda (J. Mech. Phys. Solids 52 (2004), p. 467)derived a 'generalized-secant' self-consistent approach which has been found to improve substantially on the earlier 'tangent' approach in some cases. In this work we study the influence of the linearization procedure on the predictions for the deformation of pressure tubes. The calculations are carried out by means of the VPSC code of Lebensohn et al. (14th International Conference on Textures of Materials 495-497 (2005), p. 955). It is found that the predictions based on the 'tangent' and 'generalized-secant' approaches are quite similar, and hence the use of a 'generalized-secant' approach is not recommended for this particular problem in view of its higher computational cost. Moreover, analyzing the current in-reactor deformation model reviewed by Holt (J. Nucl. Mat. 372 (2008), p. 182), a restriction in the stress state was found. The stress tensor components are projected to the material axes that are not guaranteed to be principal, for that reason the constitutive laws are not valid for a general stress state neglecting in particular the gravity forces. Based on the same constitutive law structure, a modification is proposed that accounts for a general stress state via coupling VPSC-FEM codes.Publicado en: <i>Mecánica Computacional</i> vol. XXXV no.32Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1837-1837http://sedici.unlp.edu.ar/handle/10915/105217enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5404info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:55:36Zoai:sedici.unlp.edu.ar:10915/105217Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:55:36.522SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Implementation of a Deformation Model for Pressure Tubes under Irradiation
title Implementation of a Deformation Model for Pressure Tubes under Irradiation
spellingShingle Implementation of a Deformation Model for Pressure Tubes under Irradiation
Ramos Nervi, Juan E.
Ingeniería
Thermal Creep
CANDU
Growth
Pressure Tube
Irradiation Creep
VPSC
title_short Implementation of a Deformation Model for Pressure Tubes under Irradiation
title_full Implementation of a Deformation Model for Pressure Tubes under Irradiation
title_fullStr Implementation of a Deformation Model for Pressure Tubes under Irradiation
title_full_unstemmed Implementation of a Deformation Model for Pressure Tubes under Irradiation
title_sort Implementation of a Deformation Model for Pressure Tubes under Irradiation
dc.creator.none.fl_str_mv Ramos Nervi, Juan E.
Idiart, Martin I.
Signorelli, Javier W.
author Ramos Nervi, Juan E.
author_facet Ramos Nervi, Juan E.
Idiart, Martin I.
Signorelli, Javier W.
author_role author
author2 Idiart, Martin I.
Signorelli, Javier W.
author2_role author
author
dc.subject.none.fl_str_mv Ingeniería
Thermal Creep
CANDU
Growth
Pressure Tube
Irradiation Creep
VPSC
topic Ingeniería
Thermal Creep
CANDU
Growth
Pressure Tube
Irradiation Creep
VPSC
dc.description.none.fl_txt_mv Current semi-empiric deformation models for in-reactor deformation of Zr2.5Nb CANDU pressure tubes are based on the physical model of Christodoulou et al. (Proc. 11th Int. Symp. Zirc. Nucl. Ind., ASTM STP 1295 (1996), p. 518) and consider material texture effects via the code'SELFPOLY' introduced by Tomé et al. (Philos. Mag. A67 (1993), p. 917) and Turner et al. (Philos. Mag. A 79 (1999), p. 2505). This code makes use of a 'tangent' self-consistent approach proposed by Molinari et al. (Acta Metall. 35 (1987), p. 2983) to obtain the overall response of a viscoplastic polycrystalline system in terms of the local response of the single crystals and their microstructuralmorphology. More recently, Liu and Ponte Castañeda (J. Mech. Phys. Solids 52 (2004), p. 467)derived a 'generalized-secant' self-consistent approach which has been found to improve substantially on the earlier 'tangent' approach in some cases. In this work we study the influence of the linearization procedure on the predictions for the deformation of pressure tubes. The calculations are carried out by means of the VPSC code of Lebensohn et al. (14th International Conference on Textures of Materials 495-497 (2005), p. 955). It is found that the predictions based on the 'tangent' and 'generalized-secant' approaches are quite similar, and hence the use of a 'generalized-secant' approach is not recommended for this particular problem in view of its higher computational cost. Moreover, analyzing the current in-reactor deformation model reviewed by Holt (J. Nucl. Mat. 372 (2008), p. 182), a restriction in the stress state was found. The stress tensor components are projected to the material axes that are not guaranteed to be principal, for that reason the constitutive laws are not valid for a general stress state neglecting in particular the gravity forces. Based on the same constitutive law structure, a modification is proposed that accounts for a general stress state via coupling VPSC-FEM codes.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV no.32
Facultad de Ingeniería
description Current semi-empiric deformation models for in-reactor deformation of Zr2.5Nb CANDU pressure tubes are based on the physical model of Christodoulou et al. (Proc. 11th Int. Symp. Zirc. Nucl. Ind., ASTM STP 1295 (1996), p. 518) and consider material texture effects via the code'SELFPOLY' introduced by Tomé et al. (Philos. Mag. A67 (1993), p. 917) and Turner et al. (Philos. Mag. A 79 (1999), p. 2505). This code makes use of a 'tangent' self-consistent approach proposed by Molinari et al. (Acta Metall. 35 (1987), p. 2983) to obtain the overall response of a viscoplastic polycrystalline system in terms of the local response of the single crystals and their microstructuralmorphology. More recently, Liu and Ponte Castañeda (J. Mech. Phys. Solids 52 (2004), p. 467)derived a 'generalized-secant' self-consistent approach which has been found to improve substantially on the earlier 'tangent' approach in some cases. In this work we study the influence of the linearization procedure on the predictions for the deformation of pressure tubes. The calculations are carried out by means of the VPSC code of Lebensohn et al. (14th International Conference on Textures of Materials 495-497 (2005), p. 955). It is found that the predictions based on the 'tangent' and 'generalized-secant' approaches are quite similar, and hence the use of a 'generalized-secant' approach is not recommended for this particular problem in view of its higher computational cost. Moreover, analyzing the current in-reactor deformation model reviewed by Holt (J. Nucl. Mat. 372 (2008), p. 182), a restriction in the stress state was found. The stress tensor components are projected to the material axes that are not guaranteed to be principal, for that reason the constitutive laws are not valid for a general stress state neglecting in particular the gravity forces. Based on the same constitutive law structure, a modification is proposed that accounts for a general stress state via coupling VPSC-FEM codes.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/105217
url http://sedici.unlp.edu.ar/handle/10915/105217
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5404
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1837-1837
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260442816184320
score 13.13397