New strategies for OVO feature selection on multiclass problems
- Autores
- Izetta, Javier; Grinblat, Guillermo L.; Granitto, Pablo Miguel
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Feature selection is a useful machine learning technique aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. The well-known Recursive Feature Elimination (RFE) algorithm provides good performance with moderate computational efforts, in particular for wide datasets. When using Support Vector Machines (SVM) for multiclass classification problems, the most typical strategy is to apply a simple One–Vs–One (OVO) strategy to produce a multiclass classifier starting from binary ones. In this work we introduce improved methods to produce the final ranking of features on multiclass problems with OVO–SVM, based on different combinations of the set of rankings produced by the diverse binary problems. We evaluated our new strategies using wide datasets from mass–spectrometry analysis and standard datasets from the UCI repository. In particular, we compared the new methods with the traditional average strategy. Our results suggest that one of our new methods outperforms the traditional scheme in most situations.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Feature Selection
Multiclass Problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125264
Ver los metadatos del registro completo
id |
SEDICI_12cb8964a3f15af4cbfbcfe5ed17903e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125264 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
New strategies for OVO feature selection on multiclass problemsIzetta, JavierGrinblat, Guillermo L.Granitto, Pablo MiguelCiencias InformáticasFeature SelectionMulticlass ProblemsFeature selection is a useful machine learning technique aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. The well-known Recursive Feature Elimination (RFE) algorithm provides good performance with moderate computational efforts, in particular for wide datasets. When using Support Vector Machines (SVM) for multiclass classification problems, the most typical strategy is to apply a simple One–Vs–One (OVO) strategy to produce a multiclass classifier starting from binary ones. In this work we introduce improved methods to produce the final ranking of features on multiclass problems with OVO–SVM, based on different combinations of the set of rankings produced by the diverse binary problems. We evaluated our new strategies using wide datasets from mass–spectrometry analysis and standard datasets from the UCI repository. In particular, we compared the new methods with the traditional average strategy. Our results suggest that one of our new methods outperforms the traditional scheme in most situations.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf192-201http://sedici.unlp.edu.ar/handle/10915/125264enginfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:08Zoai:sedici.unlp.edu.ar:10915/125264Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:09.237SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
New strategies for OVO feature selection on multiclass problems |
title |
New strategies for OVO feature selection on multiclass problems |
spellingShingle |
New strategies for OVO feature selection on multiclass problems Izetta, Javier Ciencias Informáticas Feature Selection Multiclass Problems |
title_short |
New strategies for OVO feature selection on multiclass problems |
title_full |
New strategies for OVO feature selection on multiclass problems |
title_fullStr |
New strategies for OVO feature selection on multiclass problems |
title_full_unstemmed |
New strategies for OVO feature selection on multiclass problems |
title_sort |
New strategies for OVO feature selection on multiclass problems |
dc.creator.none.fl_str_mv |
Izetta, Javier Grinblat, Guillermo L. Granitto, Pablo Miguel |
author |
Izetta, Javier |
author_facet |
Izetta, Javier Grinblat, Guillermo L. Granitto, Pablo Miguel |
author_role |
author |
author2 |
Grinblat, Guillermo L. Granitto, Pablo Miguel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Feature Selection Multiclass Problems |
topic |
Ciencias Informáticas Feature Selection Multiclass Problems |
dc.description.none.fl_txt_mv |
Feature selection is a useful machine learning technique aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. The well-known Recursive Feature Elimination (RFE) algorithm provides good performance with moderate computational efforts, in particular for wide datasets. When using Support Vector Machines (SVM) for multiclass classification problems, the most typical strategy is to apply a simple One–Vs–One (OVO) strategy to produce a multiclass classifier starting from binary ones. In this work we introduce improved methods to produce the final ranking of features on multiclass problems with OVO–SVM, based on different combinations of the set of rankings produced by the diverse binary problems. We evaluated our new strategies using wide datasets from mass–spectrometry analysis and standard datasets from the UCI repository. In particular, we compared the new methods with the traditional average strategy. Our results suggest that one of our new methods outperforms the traditional scheme in most situations. Sociedad Argentina de Informática e Investigación Operativa |
description |
Feature selection is a useful machine learning technique aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order to increase the performance and interpretability of models. The well-known Recursive Feature Elimination (RFE) algorithm provides good performance with moderate computational efforts, in particular for wide datasets. When using Support Vector Machines (SVM) for multiclass classification problems, the most typical strategy is to apply a simple One–Vs–One (OVO) strategy to produce a multiclass classifier starting from binary ones. In this work we introduce improved methods to produce the final ranking of features on multiclass problems with OVO–SVM, based on different combinations of the set of rankings produced by the diverse binary problems. We evaluated our new strategies using wide datasets from mass–spectrometry analysis and standard datasets from the UCI repository. In particular, we compared the new methods with the traditional average strategy. Our results suggest that one of our new methods outperforms the traditional scheme in most situations. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125264 |
url |
http://sedici.unlp.edu.ar/handle/10915/125264 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 192-201 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616180878278656 |
score |
13.070432 |