Vortices in fracton type gauge theories
- Autores
- Lozano, Gustavo Sergio; Schaposnik, Fidel Arturo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a vector gauge theory in 2 + 1 dimensions of the type recently proposed by Radzihovsky and Hermele [1] to describe fracton phases of matter. The theory has U(1)×U(1) vector gauge fields coupled to an additional vector field with a non conventional gauge symmetry. We added to the theory scalar matter in order to break the gauge symmetry. We analyze non trivial configurations by reducing the field equations to first order self dual (BPS) equations which we solved numerically. We have found vortex solutions for the gauge fields which in turn generate for the extra vector field non-trivial configurations that can be associated to magnetic dipoles.
Instituto de Física La Plata - Materia
-
Física
Ciencias Exactas
gauge theories
scalar matter
vortex solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/124910
Ver los metadatos del registro completo
id |
SEDICI_11a04d896862b763d275d81502c62eb9 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/124910 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Vortices in fracton type gauge theoriesLozano, Gustavo SergioSchaposnik, Fidel ArturoFísicaCiencias Exactasgauge theoriesscalar mattervortex solutionsWe consider a vector gauge theory in 2 + 1 dimensions of the type recently proposed by Radzihovsky and Hermele [1] to describe fracton phases of matter. The theory has U(1)×U(1) vector gauge fields coupled to an additional vector field with a non conventional gauge symmetry. We added to the theory scalar matter in order to break the gauge symmetry. We analyze non trivial configurations by reducing the field equations to first order self dual (BPS) equations which we solved numerically. We have found vortex solutions for the gauge fields which in turn generate for the extra vector field non-trivial configurations that can be associated to magnetic dipoles.Instituto de Física La Plata2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/124910enginfo:eu-repo/semantics/altIdentifier/issn/0370-2693info:eu-repo/semantics/altIdentifier/arxiv/2010.00112info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2020.135978info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:12:29Zoai:sedici.unlp.edu.ar:10915/124910Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:12:29.562SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Vortices in fracton type gauge theories |
title |
Vortices in fracton type gauge theories |
spellingShingle |
Vortices in fracton type gauge theories Lozano, Gustavo Sergio Física Ciencias Exactas gauge theories scalar matter vortex solutions |
title_short |
Vortices in fracton type gauge theories |
title_full |
Vortices in fracton type gauge theories |
title_fullStr |
Vortices in fracton type gauge theories |
title_full_unstemmed |
Vortices in fracton type gauge theories |
title_sort |
Vortices in fracton type gauge theories |
dc.creator.none.fl_str_mv |
Lozano, Gustavo Sergio Schaposnik, Fidel Arturo |
author |
Lozano, Gustavo Sergio |
author_facet |
Lozano, Gustavo Sergio Schaposnik, Fidel Arturo |
author_role |
author |
author2 |
Schaposnik, Fidel Arturo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Ciencias Exactas gauge theories scalar matter vortex solutions |
topic |
Física Ciencias Exactas gauge theories scalar matter vortex solutions |
dc.description.none.fl_txt_mv |
We consider a vector gauge theory in 2 + 1 dimensions of the type recently proposed by Radzihovsky and Hermele [1] to describe fracton phases of matter. The theory has U(1)×U(1) vector gauge fields coupled to an additional vector field with a non conventional gauge symmetry. We added to the theory scalar matter in order to break the gauge symmetry. We analyze non trivial configurations by reducing the field equations to first order self dual (BPS) equations which we solved numerically. We have found vortex solutions for the gauge fields which in turn generate for the extra vector field non-trivial configurations that can be associated to magnetic dipoles. Instituto de Física La Plata |
description |
We consider a vector gauge theory in 2 + 1 dimensions of the type recently proposed by Radzihovsky and Hermele [1] to describe fracton phases of matter. The theory has U(1)×U(1) vector gauge fields coupled to an additional vector field with a non conventional gauge symmetry. We added to the theory scalar matter in order to break the gauge symmetry. We analyze non trivial configurations by reducing the field equations to first order self dual (BPS) equations which we solved numerically. We have found vortex solutions for the gauge fields which in turn generate for the extra vector field non-trivial configurations that can be associated to magnetic dipoles. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/124910 |
url |
http://sedici.unlp.edu.ar/handle/10915/124910 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0370-2693 info:eu-repo/semantics/altIdentifier/arxiv/2010.00112 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2020.135978 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532740763320320 |
score |
13.001348 |