Factorization in spin systems under general fields and separable ground-state engineering

Autores
Cerezo de la Roca, Marco Vinicio Sebastián; Rossignoli, Raúl Dante; Canosa, Norma Beatriz
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss ground-state factorization schemes in spin S arrays with general quadratic couplings under general magnetic fields, not necessarily uniform or transverse. It is shown that, given arbitrary spin alignment directions at each site, nonzero XYZ couplings between any pair and fields at each site always exist such that the ensuing Hamiltonian has an exactly separable eigenstate with the spins pointing along the specified directions. Furthermore, by suitable tuning of the fields this eigenstate can always be cooled down to a nondegenerate ground state. It is also shown that in open one-dimensional systems with fixed arbitrary first-neighbor couplings at least one separable eigenstate compatible with an arbitrarily chosen spin direction at one site is always feasible if the fields at each site can be tuned. We demonstrate as well that in the vicinity of factorization, i.e., for small perturbations in the fields or couplings, pairwise entanglement reaches full range. Some noticeable examples of factorized eigenstates are unveiled. The present results open the way for separable ground-state engineering. A notation to quantify the complexity of a given type of solution according to the required control on the system couplings and fields is introduced.
Instituto de Física La Plata
Materia
Física
Ciencias Exactas
Factorization schemes
Separable states
Spin systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/95494

id SEDICI_0f3fe5232801bce1526bb42668aa456d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/95494
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Factorization in spin systems under general fields and separable ground-state engineeringCerezo de la Roca, Marco Vinicio SebastiánRossignoli, Raúl DanteCanosa, Norma BeatrizFísicaCiencias ExactasFactorization schemesSeparable statesSpin systemsWe discuss ground-state factorization schemes in spin S arrays with general quadratic couplings under general magnetic fields, not necessarily uniform or transverse. It is shown that, given arbitrary spin alignment directions at each site, nonzero XYZ couplings between any pair and fields at each site always exist such that the ensuing Hamiltonian has an exactly separable eigenstate with the spins pointing along the specified directions. Furthermore, by suitable tuning of the fields this eigenstate can always be cooled down to a nondegenerate ground state. It is also shown that in open one-dimensional systems with fixed arbitrary first-neighbor couplings at least one separable eigenstate compatible with an arbitrarily chosen spin direction at one site is always feasible if the fields at each site can be tuned. We demonstrate as well that in the vicinity of factorization, i.e., for small perturbations in the fields or couplings, pairwise entanglement reaches full range. Some noticeable examples of factorized eigenstates are unveiled. The present results open the way for separable ground-state engineering. A notation to quantify the complexity of a given type of solution according to the required control on the system couplings and fields is introduced.Instituto de Física La Plata2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf423351-4233510http://sedici.unlp.edu.ar/handle/10915/95494enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/70692info:eu-repo/semantics/altIdentifier/issn/2469-9934info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.94.042335info:eu-repo/semantics/altIdentifier/hdl/11336/70692info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T15:25:27Zoai:sedici.unlp.edu.ar:10915/95494Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 15:25:28.05SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Factorization in spin systems under general fields and separable ground-state engineering
title Factorization in spin systems under general fields and separable ground-state engineering
spellingShingle Factorization in spin systems under general fields and separable ground-state engineering
Cerezo de la Roca, Marco Vinicio Sebastián
Física
Ciencias Exactas
Factorization schemes
Separable states
Spin systems
title_short Factorization in spin systems under general fields and separable ground-state engineering
title_full Factorization in spin systems under general fields and separable ground-state engineering
title_fullStr Factorization in spin systems under general fields and separable ground-state engineering
title_full_unstemmed Factorization in spin systems under general fields and separable ground-state engineering
title_sort Factorization in spin systems under general fields and separable ground-state engineering
dc.creator.none.fl_str_mv Cerezo de la Roca, Marco Vinicio Sebastián
Rossignoli, Raúl Dante
Canosa, Norma Beatriz
author Cerezo de la Roca, Marco Vinicio Sebastián
author_facet Cerezo de la Roca, Marco Vinicio Sebastián
Rossignoli, Raúl Dante
Canosa, Norma Beatriz
author_role author
author2 Rossignoli, Raúl Dante
Canosa, Norma Beatriz
author2_role author
author
dc.subject.none.fl_str_mv Física
Ciencias Exactas
Factorization schemes
Separable states
Spin systems
topic Física
Ciencias Exactas
Factorization schemes
Separable states
Spin systems
dc.description.none.fl_txt_mv We discuss ground-state factorization schemes in spin S arrays with general quadratic couplings under general magnetic fields, not necessarily uniform or transverse. It is shown that, given arbitrary spin alignment directions at each site, nonzero XYZ couplings between any pair and fields at each site always exist such that the ensuing Hamiltonian has an exactly separable eigenstate with the spins pointing along the specified directions. Furthermore, by suitable tuning of the fields this eigenstate can always be cooled down to a nondegenerate ground state. It is also shown that in open one-dimensional systems with fixed arbitrary first-neighbor couplings at least one separable eigenstate compatible with an arbitrarily chosen spin direction at one site is always feasible if the fields at each site can be tuned. We demonstrate as well that in the vicinity of factorization, i.e., for small perturbations in the fields or couplings, pairwise entanglement reaches full range. Some noticeable examples of factorized eigenstates are unveiled. The present results open the way for separable ground-state engineering. A notation to quantify the complexity of a given type of solution according to the required control on the system couplings and fields is introduced.
Instituto de Física La Plata
description We discuss ground-state factorization schemes in spin S arrays with general quadratic couplings under general magnetic fields, not necessarily uniform or transverse. It is shown that, given arbitrary spin alignment directions at each site, nonzero XYZ couplings between any pair and fields at each site always exist such that the ensuing Hamiltonian has an exactly separable eigenstate with the spins pointing along the specified directions. Furthermore, by suitable tuning of the fields this eigenstate can always be cooled down to a nondegenerate ground state. It is also shown that in open one-dimensional systems with fixed arbitrary first-neighbor couplings at least one separable eigenstate compatible with an arbitrarily chosen spin direction at one site is always feasible if the fields at each site can be tuned. We demonstrate as well that in the vicinity of factorization, i.e., for small perturbations in the fields or couplings, pairwise entanglement reaches full range. Some noticeable examples of factorized eigenstates are unveiled. The present results open the way for separable ground-state engineering. A notation to quantify the complexity of a given type of solution according to the required control on the system couplings and fields is introduced.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/95494
url http://sedici.unlp.edu.ar/handle/10915/95494
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/70692
info:eu-repo/semantics/altIdentifier/issn/2469-9934
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.94.042335
info:eu-repo/semantics/altIdentifier/hdl/11336/70692
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
423351-4233510
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1847428256947503104
score 13.10058