Marcos argumentativos etiquetados

Autores
Budán, Maximiliano Celmo David
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El área de la representación del conocimiento y el razonamiento rebatible en Inteligencia Artificial se especializa en modelar el proceso de razonamiento humano de manera tal de establecer qué conclusiones son aceptables en un contexto de desacuerdo. En términos generales, las teorías de la argumentación se ocupan de analizar las interacciones entre los argumentos que están a favor o en contra de una determinada conclusión, para finalmente establecer su aceptabilidad. El objetivo principal del presente trabajo es expandir la capacidad de representación de los marcos argumentativos permitiendo representar las características especiales de los argumentos, y analizar cómo éstas se ven afectadas por las relaciones de soporte, agregación y ataque que se establecen entre los argumentos de un modelo que representa una determinada discusión argumentativa. Para ello, añadiremos un meta-nivel de información a los argumentos en la forma de etiquetas extendiendo así sus capacidades de representación, y brindaremos las herramientas necesarias para propagar y combinar las etiquetas en el dominio de la argumentación. Finalmente, utilizaremos la información proporcionada por las etiquetas para optimizar el proceso de aceptabilidad de los argumentos y brindar así resultados más refinados.
Eje: Tesis doctorales. Tesis doctoral defendida por el autor en 2015, dirigida por Guillermo R. Simari y Rosanna N. Costaguta.
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
formalismos argumentativos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/53412

id SEDICI_0cfe7c0f89040e97b64a79edd6f7746d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/53412
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Marcos argumentativos etiquetadosBudán, Maximiliano Celmo DavidCiencias Informáticasformalismos argumentativosEl área de la representación del conocimiento y el razonamiento rebatible en Inteligencia Artificial se especializa en modelar el proceso de razonamiento humano de manera tal de establecer qué conclusiones son aceptables en un contexto de desacuerdo. En términos generales, las teorías de la argumentación se ocupan de analizar las interacciones entre los argumentos que están a favor o en contra de una determinada conclusión, para finalmente establecer su aceptabilidad. El objetivo principal del presente trabajo es expandir la capacidad de representación de los marcos argumentativos permitiendo representar las características especiales de los argumentos, y analizar cómo éstas se ven afectadas por las relaciones de soporte, agregación y ataque que se establecen entre los argumentos de un modelo que representa una determinada discusión argumentativa. Para ello, añadiremos un meta-nivel de información a los argumentos en la forma de etiquetas extendiendo así sus capacidades de representación, y brindaremos las herramientas necesarias para propagar y combinar las etiquetas en el dominio de la argumentación. Finalmente, utilizaremos la información proporcionada por las etiquetas para optimizar el proceso de aceptabilidad de los argumentos y brindar así resultados más refinados.Eje: Tesis doctorales. Tesis doctoral defendida por el autor en 2015, dirigida por Guillermo R. Simari y Rosanna N. Costaguta.Red de Universidades con Carreras en Informática (RedUNCI)2016-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1075-1084http://sedici.unlp.edu.ar/handle/10915/53412spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2info:eu-repo/semantics/reference/hdl/10915/52766info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:37:41Zoai:sedici.unlp.edu.ar:10915/53412Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:37:42.214SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Marcos argumentativos etiquetados
title Marcos argumentativos etiquetados
spellingShingle Marcos argumentativos etiquetados
Budán, Maximiliano Celmo David
Ciencias Informáticas
formalismos argumentativos
title_short Marcos argumentativos etiquetados
title_full Marcos argumentativos etiquetados
title_fullStr Marcos argumentativos etiquetados
title_full_unstemmed Marcos argumentativos etiquetados
title_sort Marcos argumentativos etiquetados
dc.creator.none.fl_str_mv Budán, Maximiliano Celmo David
author Budán, Maximiliano Celmo David
author_facet Budán, Maximiliano Celmo David
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
formalismos argumentativos
topic Ciencias Informáticas
formalismos argumentativos
dc.description.none.fl_txt_mv El área de la representación del conocimiento y el razonamiento rebatible en Inteligencia Artificial se especializa en modelar el proceso de razonamiento humano de manera tal de establecer qué conclusiones son aceptables en un contexto de desacuerdo. En términos generales, las teorías de la argumentación se ocupan de analizar las interacciones entre los argumentos que están a favor o en contra de una determinada conclusión, para finalmente establecer su aceptabilidad. El objetivo principal del presente trabajo es expandir la capacidad de representación de los marcos argumentativos permitiendo representar las características especiales de los argumentos, y analizar cómo éstas se ven afectadas por las relaciones de soporte, agregación y ataque que se establecen entre los argumentos de un modelo que representa una determinada discusión argumentativa. Para ello, añadiremos un meta-nivel de información a los argumentos en la forma de etiquetas extendiendo así sus capacidades de representación, y brindaremos las herramientas necesarias para propagar y combinar las etiquetas en el dominio de la argumentación. Finalmente, utilizaremos la información proporcionada por las etiquetas para optimizar el proceso de aceptabilidad de los argumentos y brindar así resultados más refinados.
Eje: Tesis doctorales. Tesis doctoral defendida por el autor en 2015, dirigida por Guillermo R. Simari y Rosanna N. Costaguta.
Red de Universidades con Carreras en Informática (RedUNCI)
description El área de la representación del conocimiento y el razonamiento rebatible en Inteligencia Artificial se especializa en modelar el proceso de razonamiento humano de manera tal de establecer qué conclusiones son aceptables en un contexto de desacuerdo. En términos generales, las teorías de la argumentación se ocupan de analizar las interacciones entre los argumentos que están a favor o en contra de una determinada conclusión, para finalmente establecer su aceptabilidad. El objetivo principal del presente trabajo es expandir la capacidad de representación de los marcos argumentativos permitiendo representar las características especiales de los argumentos, y analizar cómo éstas se ven afectadas por las relaciones de soporte, agregación y ataque que se establecen entre los argumentos de un modelo que representa una determinada discusión argumentativa. Para ello, añadiremos un meta-nivel de información a los argumentos en la forma de etiquetas extendiendo así sus capacidades de representación, y brindaremos las herramientas necesarias para propagar y combinar las etiquetas en el dominio de la argumentación. Finalmente, utilizaremos la información proporcionada por las etiquetas para optimizar el proceso de aceptabilidad de los argumentos y brindar así resultados más refinados.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/53412
url http://sedici.unlp.edu.ar/handle/10915/53412
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2
info:eu-repo/semantics/reference/hdl/10915/52766
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
1075-1084
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260235414142976
score 13.13397