Scaling up ConvAtt for Sign Language Recognition
- Autores
- Ríos, Gastón Gustavo; Dal Bianco, Pedro Alejandro; Ronchetti, Franco; Quiroga, Facundo Manuel; Ponte Ahón, Santiago Andrés; Stanchi, Oscar Agustín; Hasperué, Waldo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Handshape Recognition
Unbalanced Data
Limited Data
Sign Language
Human Motion Prediction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/176284
Ver los metadatos del registro completo
id |
SEDICI_0cdb92663a09dc8e8bac197c56b13fdc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/176284 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Scaling up ConvAtt for Sign Language RecognitionRíos, Gastón GustavoDal Bianco, Pedro AlejandroRonchetti, FrancoQuiroga, Facundo ManuelPonte Ahón, Santiago AndrésStanchi, Oscar AgustínHasperué, WaldoCiencias InformáticasHandshape RecognitionUnbalanced DataLimited DataSign LanguageHuman Motion PredictionSign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs.Red de Universidades con Carreras en Informática2024-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf145-154http://sedici.unlp.edu.ar/handle/10915/176284enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2428-5info:eu-repo/semantics/reference/hdl/10915/172755info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:47:28Zoai:sedici.unlp.edu.ar:10915/176284Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:47:28.773SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Scaling up ConvAtt for Sign Language Recognition |
title |
Scaling up ConvAtt for Sign Language Recognition |
spellingShingle |
Scaling up ConvAtt for Sign Language Recognition Ríos, Gastón Gustavo Ciencias Informáticas Handshape Recognition Unbalanced Data Limited Data Sign Language Human Motion Prediction |
title_short |
Scaling up ConvAtt for Sign Language Recognition |
title_full |
Scaling up ConvAtt for Sign Language Recognition |
title_fullStr |
Scaling up ConvAtt for Sign Language Recognition |
title_full_unstemmed |
Scaling up ConvAtt for Sign Language Recognition |
title_sort |
Scaling up ConvAtt for Sign Language Recognition |
dc.creator.none.fl_str_mv |
Ríos, Gastón Gustavo Dal Bianco, Pedro Alejandro Ronchetti, Franco Quiroga, Facundo Manuel Ponte Ahón, Santiago Andrés Stanchi, Oscar Agustín Hasperué, Waldo |
author |
Ríos, Gastón Gustavo |
author_facet |
Ríos, Gastón Gustavo Dal Bianco, Pedro Alejandro Ronchetti, Franco Quiroga, Facundo Manuel Ponte Ahón, Santiago Andrés Stanchi, Oscar Agustín Hasperué, Waldo |
author_role |
author |
author2 |
Dal Bianco, Pedro Alejandro Ronchetti, Franco Quiroga, Facundo Manuel Ponte Ahón, Santiago Andrés Stanchi, Oscar Agustín Hasperué, Waldo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Handshape Recognition Unbalanced Data Limited Data Sign Language Human Motion Prediction |
topic |
Ciencias Informáticas Handshape Recognition Unbalanced Data Limited Data Sign Language Human Motion Prediction |
dc.description.none.fl_txt_mv |
Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs. Red de Universidades con Carreras en Informática |
description |
Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/176284 |
url |
http://sedici.unlp.edu.ar/handle/10915/176284 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2428-5 info:eu-repo/semantics/reference/hdl/10915/172755 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 145-154 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616338267439104 |
score |
13.070432 |