The progenitor of binary millisecond radio pulsar PSR J1713+0747

Autores
Chen, W. C.; Panei, Jorge Alejandro
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. PSR J1713+0747 is a binary system comprising millisecond radio pulsar with a spin period of 4.57 ms, and a low-mass white dwarf (WD) companion orbiting the pulsar with a period of 67.8 days. Using the general relativistic Shapiro delay, the masses of the WD and pulsar components were previously found to be 0.28 ± 0.03 M⊙ and 1.3 ± 0.2 M ⊙ (68% confidence), respectively. Aims. Standard binary evolution theory suggests that PSR J1713+0747 evolved from a low-mass X-ray binary (LMXB). Here, we test this hypothesis. Methods. We used a binary evolution code and a WD evolution code to calculate evolutionary sequences of LMXBs that could result in binary millisecond radio pulsars such as PSR J1713+0747. Results. During the mass exchange, the mass transfer is nonconservative. Because of the thermal and viscous instabilities developing in the accretion disk, the neutron star accretes only a small part of the incoming material. We find that the progenitor of PSR J1713+0747 can be modelled as an LMXB including a donor star with mass 1.3 - 1.6 M⊙ and an initial orbital period ranging from 2.40 to 4.15 days. If the cooling timescale of the WD is 8 Gyr, its present effective temperature is between 3870 and 4120 K, slightly higher than the observed value. We estimate a surface gravity of Log(g) ≈ 7.38 - 7.40.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
pulsars: general
stars: low-mass
white dwarfs
Estrellas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84271

id SEDICI_0cb3a4e9dce9fd5d26ad100a20c9f277
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84271
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The progenitor of binary millisecond radio pulsar PSR J1713+0747Chen, W. C.Panei, Jorge AlejandroCiencias Astronómicaspulsars: generalstars: low-masswhite dwarfsEstrellas<b>Context.</b> PSR J1713+0747 is a binary system comprising millisecond radio pulsar with a spin period of 4.57 ms, and a low-mass white dwarf (WD) companion orbiting the pulsar with a period of 67.8 days. Using the general relativistic Shapiro delay, the masses of the WD and pulsar components were previously found to be 0.28 ± 0.03 M⊙ and 1.3 ± 0.2 M ⊙ (68% confidence), respectively. <b>Aims.</b> Standard binary evolution theory suggests that PSR J1713+0747 evolved from a low-mass X-ray binary (LMXB). Here, we test this hypothesis. <b>Methods.</b> We used a binary evolution code and a WD evolution code to calculate evolutionary sequences of LMXBs that could result in binary millisecond radio pulsars such as PSR J1713+0747. <b>Results.</b> During the mass exchange, the mass transfer is nonconservative. Because of the thermal and viscous instabilities developing in the accretion disk, the neutron star accretes only a small part of the incoming material. We find that the progenitor of PSR J1713+0747 can be modelled as an LMXB including a donor star with mass 1.3 - 1.6 M⊙ and an initial orbital period ranging from 2.40 to 4.15 days. If the cooling timescale of the WD is 8 Gyr, its present effective temperature is between 3870 and 4120 K, slightly higher than the observed value. We estimate a surface gravity of Log(g) ≈ 7.38 - 7.40.Facultad de Ciencias Astronómicas y Geofísicas2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/84271enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201014833info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:10Zoai:sedici.unlp.edu.ar:10915/84271Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:10.338SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The progenitor of binary millisecond radio pulsar PSR J1713+0747
title The progenitor of binary millisecond radio pulsar PSR J1713+0747
spellingShingle The progenitor of binary millisecond radio pulsar PSR J1713+0747
Chen, W. C.
Ciencias Astronómicas
pulsars: general
stars: low-mass
white dwarfs
Estrellas
title_short The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_full The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_fullStr The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_full_unstemmed The progenitor of binary millisecond radio pulsar PSR J1713+0747
title_sort The progenitor of binary millisecond radio pulsar PSR J1713+0747
dc.creator.none.fl_str_mv Chen, W. C.
Panei, Jorge Alejandro
author Chen, W. C.
author_facet Chen, W. C.
Panei, Jorge Alejandro
author_role author
author2 Panei, Jorge Alejandro
author2_role author
dc.subject.none.fl_str_mv Ciencias Astronómicas
pulsars: general
stars: low-mass
white dwarfs
Estrellas
topic Ciencias Astronómicas
pulsars: general
stars: low-mass
white dwarfs
Estrellas
dc.description.none.fl_txt_mv <b>Context.</b> PSR J1713+0747 is a binary system comprising millisecond radio pulsar with a spin period of 4.57 ms, and a low-mass white dwarf (WD) companion orbiting the pulsar with a period of 67.8 days. Using the general relativistic Shapiro delay, the masses of the WD and pulsar components were previously found to be 0.28 ± 0.03 M⊙ and 1.3 ± 0.2 M ⊙ (68% confidence), respectively. <b>Aims.</b> Standard binary evolution theory suggests that PSR J1713+0747 evolved from a low-mass X-ray binary (LMXB). Here, we test this hypothesis. <b>Methods.</b> We used a binary evolution code and a WD evolution code to calculate evolutionary sequences of LMXBs that could result in binary millisecond radio pulsars such as PSR J1713+0747. <b>Results.</b> During the mass exchange, the mass transfer is nonconservative. Because of the thermal and viscous instabilities developing in the accretion disk, the neutron star accretes only a small part of the incoming material. We find that the progenitor of PSR J1713+0747 can be modelled as an LMXB including a donor star with mass 1.3 - 1.6 M⊙ and an initial orbital period ranging from 2.40 to 4.15 days. If the cooling timescale of the WD is 8 Gyr, its present effective temperature is between 3870 and 4120 K, slightly higher than the observed value. We estimate a surface gravity of Log(g) ≈ 7.38 - 7.40.
Facultad de Ciencias Astronómicas y Geofísicas
description <b>Context.</b> PSR J1713+0747 is a binary system comprising millisecond radio pulsar with a spin period of 4.57 ms, and a low-mass white dwarf (WD) companion orbiting the pulsar with a period of 67.8 days. Using the general relativistic Shapiro delay, the masses of the WD and pulsar components were previously found to be 0.28 ± 0.03 M⊙ and 1.3 ± 0.2 M ⊙ (68% confidence), respectively. <b>Aims.</b> Standard binary evolution theory suggests that PSR J1713+0747 evolved from a low-mass X-ray binary (LMXB). Here, we test this hypothesis. <b>Methods.</b> We used a binary evolution code and a WD evolution code to calculate evolutionary sequences of LMXBs that could result in binary millisecond radio pulsars such as PSR J1713+0747. <b>Results.</b> During the mass exchange, the mass transfer is nonconservative. Because of the thermal and viscous instabilities developing in the accretion disk, the neutron star accretes only a small part of the incoming material. We find that the progenitor of PSR J1713+0747 can be modelled as an LMXB including a donor star with mass 1.3 - 1.6 M⊙ and an initial orbital period ranging from 2.40 to 4.15 days. If the cooling timescale of the WD is 8 Gyr, its present effective temperature is between 3870 and 4120 K, slightly higher than the observed value. We estimate a surface gravity of Log(g) ≈ 7.38 - 7.40.
publishDate 2011
dc.date.none.fl_str_mv 2011-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84271
url http://sedici.unlp.edu.ar/handle/10915/84271
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201014833
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616033995849728
score 13.070432