Performance comparison of parallel programming paradigms on a multicore cluster
- Autores
- Rucci, Enzo; Chichizola, Franco; Naiouf, Marcelo; De Giusti, Armando Eduardo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Currently, most supercomputers are multicore clusters. This type of architectures is said to be hybrid, because they combine distributed memory with shared memory. Traditional parallel programming paradigms (message passing and shared memory) cannot be naturally adapted to the hardware features offered by these architectures. A parallel paradigm that combines message passing with shared memory is expected to better exploit them. Therefore, in this paper the performance of two parallel programming paradigms (message passing and combination of message passing with shared memory) is analyzed for multicore clusters. The study case used is the construction of phylogenetic trees by means of the Neighbor-Joining method. Finally, conclusions and future research lines are presented.
Facultad de Informática - Materia
-
Ciencias Informáticas
Parallel programming languages
Parallel computing methodologies - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/80059
Ver los metadatos del registro completo
| id |
SEDICI_07aa11517eb6ca9e0e99eeccbfbefa40 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/80059 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Performance comparison of parallel programming paradigms on a multicore clusterRucci, EnzoChichizola, FrancoNaiouf, MarceloDe Giusti, Armando EduardoCiencias InformáticasParallel programming languagesParallel computing methodologiesCurrently, most supercomputers are multicore clusters. This type of architectures is said to be hybrid, because they combine distributed memory with shared memory. Traditional parallel programming paradigms (message passing and shared memory) cannot be naturally adapted to the hardware features offered by these architectures. A parallel paradigm that combines message passing with shared memory is expected to better exploit them. Therefore, in this paper the performance of two parallel programming paradigms (message passing and combination of message passing with shared memory) is analyzed for multicore clusters. The study case used is the construction of phylogenetic trees by means of the Neighbor-Joining method. Finally, conclusions and future research lines are presented.Facultad de Informática2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/80059enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:06:33Zoai:sedici.unlp.edu.ar:10915/80059Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:06:34.125SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Performance comparison of parallel programming paradigms on a multicore cluster |
| title |
Performance comparison of parallel programming paradigms on a multicore cluster |
| spellingShingle |
Performance comparison of parallel programming paradigms on a multicore cluster Rucci, Enzo Ciencias Informáticas Parallel programming languages Parallel computing methodologies |
| title_short |
Performance comparison of parallel programming paradigms on a multicore cluster |
| title_full |
Performance comparison of parallel programming paradigms on a multicore cluster |
| title_fullStr |
Performance comparison of parallel programming paradigms on a multicore cluster |
| title_full_unstemmed |
Performance comparison of parallel programming paradigms on a multicore cluster |
| title_sort |
Performance comparison of parallel programming paradigms on a multicore cluster |
| dc.creator.none.fl_str_mv |
Rucci, Enzo Chichizola, Franco Naiouf, Marcelo De Giusti, Armando Eduardo |
| author |
Rucci, Enzo |
| author_facet |
Rucci, Enzo Chichizola, Franco Naiouf, Marcelo De Giusti, Armando Eduardo |
| author_role |
author |
| author2 |
Chichizola, Franco Naiouf, Marcelo De Giusti, Armando Eduardo |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Parallel programming languages Parallel computing methodologies |
| topic |
Ciencias Informáticas Parallel programming languages Parallel computing methodologies |
| dc.description.none.fl_txt_mv |
Currently, most supercomputers are multicore clusters. This type of architectures is said to be hybrid, because they combine distributed memory with shared memory. Traditional parallel programming paradigms (message passing and shared memory) cannot be naturally adapted to the hardware features offered by these architectures. A parallel paradigm that combines message passing with shared memory is expected to better exploit them. Therefore, in this paper the performance of two parallel programming paradigms (message passing and combination of message passing with shared memory) is analyzed for multicore clusters. The study case used is the construction of phylogenetic trees by means of the Neighbor-Joining method. Finally, conclusions and future research lines are presented. Facultad de Informática |
| description |
Currently, most supercomputers are multicore clusters. This type of architectures is said to be hybrid, because they combine distributed memory with shared memory. Traditional parallel programming paradigms (message passing and shared memory) cannot be naturally adapted to the hardware features offered by these architectures. A parallel paradigm that combines message passing with shared memory is expected to better exploit them. Therefore, in this paper the performance of two parallel programming paradigms (message passing and combination of message passing with shared memory) is analyzed for multicore clusters. The study case used is the construction of phylogenetic trees by means of the Neighbor-Joining method. Finally, conclusions and future research lines are presented. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/80059 |
| url |
http://sedici.unlp.edu.ar/handle/10915/80059 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846064120945704960 |
| score |
13.22299 |