A fully-differential biopotential amplifier with a reduced number of parts
- Autores
- Spinelli, Enrique Mario; García, Pablo Andrés; Guerrero, Federico Nicolás; Catacora, Valentín Andrés; Haberman, Marcelo Alejandro
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective: Fully differential topologies are wellsuited for biopotential amplifiers, mainly for single-supply battery-powered circuits such as portable wearable devices where a reduced number of parts is desired. A novel fully differential biopotential amplifier is proposed with the goal of providing electrode offset rejection, bandwidth limitation, and a temporal response compliant with biomedical standards with only a single commercial quad operational amplifier (OA) integrated circuit. Methods: A novel compensation strategy was used to provide a transfer function with only one zero at the origin, which makes it easy to comply with the transient response imposed by biomedical standards. A topology with no grounded components was leveraged to obtain a common-mode rejection ratio (CMRR) ideally infinite and independent of components mismatches. Results: Design equations are presented and, as an example, an electrocardiogram (ECG) amplifier was built and tested. It features a CMRR of 102 dB at 50 Hz, 55 dB gain that supports DC input voltages up to ±300 mV when powered from a 0 V to 5 V single-supply voltage, and a cutoff frequency of less than 0.05 Hz with a first order response. Conclusion: A fully-differential biopotential front-end was designed and validated through experimental tests, demonstrating proper operation with only 4 OAs. Significance: The amplifier is intended for board-level design solutions, it can be built with off-the-shelf components that can be selected according to specific needs, such as reduced power consumption, low noise, or proper operation from a low-voltage power source.
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales - Materia
-
Ingeniería Electrónica
Biopotential measurement
fully-differential amplifier
low cost design - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/156595
Ver los metadatos del registro completo
id |
SEDICI_063eb0f6c22a65ea0e0d52c13947482e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/156595 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A fully-differential biopotential amplifier with a reduced number of partsSpinelli, Enrique MarioGarcía, Pablo AndrésGuerrero, Federico NicolásCatacora, Valentín AndrésHaberman, Marcelo AlejandroIngeniería ElectrónicaBiopotential measurementfully-differential amplifierlow cost designObjective: Fully differential topologies are wellsuited for biopotential amplifiers, mainly for single-supply battery-powered circuits such as portable wearable devices where a reduced number of parts is desired. A novel fully differential biopotential amplifier is proposed with the goal of providing electrode offset rejection, bandwidth limitation, and a temporal response compliant with biomedical standards with only a single commercial quad operational amplifier (OA) integrated circuit. Methods: A novel compensation strategy was used to provide a transfer function with only one zero at the origin, which makes it easy to comply with the transient response imposed by biomedical standards. A topology with no grounded components was leveraged to obtain a common-mode rejection ratio (CMRR) ideally infinite and independent of components mismatches. Results: Design equations are presented and, as an example, an electrocardiogram (ECG) amplifier was built and tested. It features a CMRR of 102 dB at 50 Hz, 55 dB gain that supports DC input voltages up to ±300 mV when powered from a 0 V to 5 V single-supply voltage, and a cutoff frequency of less than 0.05 Hz with a first order response. Conclusion: A fully-differential biopotential front-end was designed and validated through experimental tests, demonstrating proper operation with only 4 OAs. Significance: The amplifier is intended for board-level design solutions, it can be built with off-the-shelf components that can be selected according to specific needs, such as reduced power consumption, low noise, or proper operation from a low-voltage power source.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales2022info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/156595enginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TIM.2022.3220284info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:12:41Zoai:sedici.unlp.edu.ar:10915/156595Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:12:41.814SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A fully-differential biopotential amplifier with a reduced number of parts |
title |
A fully-differential biopotential amplifier with a reduced number of parts |
spellingShingle |
A fully-differential biopotential amplifier with a reduced number of parts Spinelli, Enrique Mario Ingeniería Electrónica Biopotential measurement fully-differential amplifier low cost design |
title_short |
A fully-differential biopotential amplifier with a reduced number of parts |
title_full |
A fully-differential biopotential amplifier with a reduced number of parts |
title_fullStr |
A fully-differential biopotential amplifier with a reduced number of parts |
title_full_unstemmed |
A fully-differential biopotential amplifier with a reduced number of parts |
title_sort |
A fully-differential biopotential amplifier with a reduced number of parts |
dc.creator.none.fl_str_mv |
Spinelli, Enrique Mario García, Pablo Andrés Guerrero, Federico Nicolás Catacora, Valentín Andrés Haberman, Marcelo Alejandro |
author |
Spinelli, Enrique Mario |
author_facet |
Spinelli, Enrique Mario García, Pablo Andrés Guerrero, Federico Nicolás Catacora, Valentín Andrés Haberman, Marcelo Alejandro |
author_role |
author |
author2 |
García, Pablo Andrés Guerrero, Federico Nicolás Catacora, Valentín Andrés Haberman, Marcelo Alejandro |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ingeniería Electrónica Biopotential measurement fully-differential amplifier low cost design |
topic |
Ingeniería Electrónica Biopotential measurement fully-differential amplifier low cost design |
dc.description.none.fl_txt_mv |
Objective: Fully differential topologies are wellsuited for biopotential amplifiers, mainly for single-supply battery-powered circuits such as portable wearable devices where a reduced number of parts is desired. A novel fully differential biopotential amplifier is proposed with the goal of providing electrode offset rejection, bandwidth limitation, and a temporal response compliant with biomedical standards with only a single commercial quad operational amplifier (OA) integrated circuit. Methods: A novel compensation strategy was used to provide a transfer function with only one zero at the origin, which makes it easy to comply with the transient response imposed by biomedical standards. A topology with no grounded components was leveraged to obtain a common-mode rejection ratio (CMRR) ideally infinite and independent of components mismatches. Results: Design equations are presented and, as an example, an electrocardiogram (ECG) amplifier was built and tested. It features a CMRR of 102 dB at 50 Hz, 55 dB gain that supports DC input voltages up to ±300 mV when powered from a 0 V to 5 V single-supply voltage, and a cutoff frequency of less than 0.05 Hz with a first order response. Conclusion: A fully-differential biopotential front-end was designed and validated through experimental tests, demonstrating proper operation with only 4 OAs. Significance: The amplifier is intended for board-level design solutions, it can be built with off-the-shelf components that can be selected according to specific needs, such as reduced power consumption, low noise, or proper operation from a low-voltage power source. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales |
description |
Objective: Fully differential topologies are wellsuited for biopotential amplifiers, mainly for single-supply battery-powered circuits such as portable wearable devices where a reduced number of parts is desired. A novel fully differential biopotential amplifier is proposed with the goal of providing electrode offset rejection, bandwidth limitation, and a temporal response compliant with biomedical standards with only a single commercial quad operational amplifier (OA) integrated circuit. Methods: A novel compensation strategy was used to provide a transfer function with only one zero at the origin, which makes it easy to comply with the transient response imposed by biomedical standards. A topology with no grounded components was leveraged to obtain a common-mode rejection ratio (CMRR) ideally infinite and independent of components mismatches. Results: Design equations are presented and, as an example, an electrocardiogram (ECG) amplifier was built and tested. It features a CMRR of 102 dB at 50 Hz, 55 dB gain that supports DC input voltages up to ±300 mV when powered from a 0 V to 5 V single-supply voltage, and a cutoff frequency of less than 0.05 Hz with a first order response. Conclusion: A fully-differential biopotential front-end was designed and validated through experimental tests, demonstrating proper operation with only 4 OAs. Significance: The amplifier is intended for board-level design solutions, it can be built with off-the-shelf components that can be selected according to specific needs, such as reduced power consumption, low noise, or proper operation from a low-voltage power source. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/156595 |
url |
http://sedici.unlp.edu.ar/handle/10915/156595 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TIM.2022.3220284 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260631273603072 |
score |
13.13397 |