Topchat: encyclopedia-based topic identification from chat logs

Autores
Nicoletti, Matías; Schiaffino, Silvia; Godoy, Daniela
Año de publicación
2011
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Textual conversations on the Internet, such us chat rooms or instant messaging services, have become an excellent source of data for semantic analysis. In particular, potential user interests or user-related topics could be extracted from these conversations for personalization purposes. In this work, we present a novel method for topic detection from chat logs. First, we de ned the generic structure of the process. Then, a variety of text-mining techniques was evaluated in each step of the process. Stemming, synonyms, POS tagging and named entities recognition are examples of these techniques. Encouraging experimental results from a comparative evaluation procedure, allow us to determine the most suitable combination of techniques for the problem.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
semantic analysis,
text mining
chat
encyclopedia knowledge
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125228

id SEDICI_05b4a2de8e41f6d3608113d8c018577d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125228
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Topchat: encyclopedia-based topic identification from chat logsNicoletti, MatíasSchiaffino, SilviaGodoy, DanielaCiencias Informáticassemantic analysis,text miningchatencyclopedia knowledgeTextual conversations on the Internet, such us chat rooms or instant messaging services, have become an excellent source of data for semantic analysis. In particular, potential user interests or user-related topics could be extracted from these conversations for personalization purposes. In this work, we present a novel method for topic detection from chat logs. First, we de ned the generic structure of the process. Then, a variety of text-mining techniques was evaluated in each step of the process. Stemming, synonyms, POS tagging and named entities recognition are examples of these techniques. Encouraging experimental results from a comparative evaluation procedure, allow us to determine the most suitable combination of techniques for the problem.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf8-19http://sedici.unlp.edu.ar/handle/10915/125228enginfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:08Zoai:sedici.unlp.edu.ar:10915/125228Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:09.165SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Topchat: encyclopedia-based topic identification from chat logs
title Topchat: encyclopedia-based topic identification from chat logs
spellingShingle Topchat: encyclopedia-based topic identification from chat logs
Nicoletti, Matías
Ciencias Informáticas
semantic analysis,
text mining
chat
encyclopedia knowledge
title_short Topchat: encyclopedia-based topic identification from chat logs
title_full Topchat: encyclopedia-based topic identification from chat logs
title_fullStr Topchat: encyclopedia-based topic identification from chat logs
title_full_unstemmed Topchat: encyclopedia-based topic identification from chat logs
title_sort Topchat: encyclopedia-based topic identification from chat logs
dc.creator.none.fl_str_mv Nicoletti, Matías
Schiaffino, Silvia
Godoy, Daniela
author Nicoletti, Matías
author_facet Nicoletti, Matías
Schiaffino, Silvia
Godoy, Daniela
author_role author
author2 Schiaffino, Silvia
Godoy, Daniela
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
semantic analysis,
text mining
chat
encyclopedia knowledge
topic Ciencias Informáticas
semantic analysis,
text mining
chat
encyclopedia knowledge
dc.description.none.fl_txt_mv Textual conversations on the Internet, such us chat rooms or instant messaging services, have become an excellent source of data for semantic analysis. In particular, potential user interests or user-related topics could be extracted from these conversations for personalization purposes. In this work, we present a novel method for topic detection from chat logs. First, we de ned the generic structure of the process. Then, a variety of text-mining techniques was evaluated in each step of the process. Stemming, synonyms, POS tagging and named entities recognition are examples of these techniques. Encouraging experimental results from a comparative evaluation procedure, allow us to determine the most suitable combination of techniques for the problem.
Sociedad Argentina de Informática e Investigación Operativa
description Textual conversations on the Internet, such us chat rooms or instant messaging services, have become an excellent source of data for semantic analysis. In particular, potential user interests or user-related topics could be extracted from these conversations for personalization purposes. In this work, we present a novel method for topic detection from chat logs. First, we de ned the generic structure of the process. Then, a variety of text-mining techniques was evaluated in each step of the process. Stemming, synonyms, POS tagging and named entities recognition are examples of these techniques. Encouraging experimental results from a comparative evaluation procedure, allow us to determine the most suitable combination of techniques for the problem.
publishDate 2011
dc.date.none.fl_str_mv 2011-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125228
url http://sedici.unlp.edu.ar/handle/10915/125228
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1850-2784
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
8-19
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616180852064256
score 13.069144