Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections

Autores
Beneventano, Carlota Gabriela; Gilkey, Peter B.; Kirsten, Klaus; Santángelo, Eve Mariel
Año de publicación
2012
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We examine the local super trace asymptotics for the de Rham complex defined by an arbitrary super connection on the exterior algebra. We show, in contrast to the situation in which the connection in question is the Levi-Civita connection, that these invariants are generically non-zero in positive degree and that the critical term is not the Pfaffian.
Instituto de Física La Plata
Materia
Ciencias Astronómicas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129530

id SEDICI_047803ef89e633f1575da0d42d9237bc
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129530
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Heat trace asymptotics and the Gauss-Bonnet Theorem for general connectionsBeneventano, Carlota GabrielaGilkey, Peter B.Kirsten, KlausSantángelo, Eve MarielCiencias AstronómicasWe examine the local super trace asymptotics for the de Rham complex defined by an arbitrary super connection on the exterior algebra. We show, in contrast to the situation in which the connection in question is the Levi-Civita connection, that these invariants are generically non-zero in positive degree and that the critical term is not the Pfaffian.Instituto de Física La Plata2012-09-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/129530spainfo:eu-repo/semantics/altIdentifier/issn/1751-8113info:eu-repo/semantics/altIdentifier/issn/1751-8121info:eu-repo/semantics/altIdentifier/arxiv/1201.6301info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/37/374010info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:03:23Zoai:sedici.unlp.edu.ar:10915/129530Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:03:23.218SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections
title Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections
spellingShingle Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections
Beneventano, Carlota Gabriela
Ciencias Astronómicas
title_short Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections
title_full Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections
title_fullStr Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections
title_full_unstemmed Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections
title_sort Heat trace asymptotics and the Gauss-Bonnet Theorem for general connections
dc.creator.none.fl_str_mv Beneventano, Carlota Gabriela
Gilkey, Peter B.
Kirsten, Klaus
Santángelo, Eve Mariel
author Beneventano, Carlota Gabriela
author_facet Beneventano, Carlota Gabriela
Gilkey, Peter B.
Kirsten, Klaus
Santángelo, Eve Mariel
author_role author
author2 Gilkey, Peter B.
Kirsten, Klaus
Santángelo, Eve Mariel
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
topic Ciencias Astronómicas
dc.description.none.fl_txt_mv We examine the local super trace asymptotics for the de Rham complex defined by an arbitrary super connection on the exterior algebra. We show, in contrast to the situation in which the connection in question is the Levi-Civita connection, that these invariants are generically non-zero in positive degree and that the critical term is not the Pfaffian.
Instituto de Física La Plata
description We examine the local super trace asymptotics for the de Rham complex defined by an arbitrary super connection on the exterior algebra. We show, in contrast to the situation in which the connection in question is the Levi-Civita connection, that these invariants are generically non-zero in positive degree and that the critical term is not the Pfaffian.
publishDate 2012
dc.date.none.fl_str_mv 2012-09-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129530
url http://sedici.unlp.edu.ar/handle/10915/129530
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1751-8113
info:eu-repo/semantics/altIdentifier/issn/1751-8121
info:eu-repo/semantics/altIdentifier/arxiv/1201.6301
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/37/374010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260531934658560
score 13.13397