Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case
- Autores
- Vecchia, Eugenio Della; Di Marco, Silvia; Jean-Marie, Alain
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We study the behavior of the rolling horizon procedure for semi-Markov decision processes, with infinite-horizon discounted reward, when the state space is a Borel set and the action spaces are considered compact. We prove the convergence of the rewards produced by the rolling horizon policies to the optimal reward function, when the horizon length tends to infinity, under different assumptions on the instantaneous reward function. The approach is based on extensions of the results obtained in [7] for the discrete-time Markov decision process case and in [3] for the case of discrete-time Markov games. Finally, we also analyse the performance of an approximate rolling horizon procedure.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Semi-Markov decision processes
Rolling horizon
Discounted criterion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/139314
Ver los metadatos del registro completo
id |
SEDICI_0107b587db019838740404f39796e722 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/139314 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted CaseVecchia, Eugenio DellaDi Marco, SilviaJean-Marie, AlainCiencias InformáticasSemi-Markov decision processesRolling horizonDiscounted criterionWe study the behavior of the rolling horizon procedure for semi-Markov decision processes, with infinite-horizon discounted reward, when the state space is a Borel set and the action spaces are considered compact. We prove the convergence of the rewards produced by the rolling horizon policies to the optimal reward function, when the horizon length tends to infinity, under different assumptions on the instantaneous reward function. The approach is based on extensions of the results obtained in [7] for the discrete-time Markov decision process case and in [3] for the case of discrete-time Markov games. Finally, we also analyse the performance of an approximate rolling horizon procedure.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf25-37http://sedici.unlp.edu.ar/handle/10915/139314enginfo:eu-repo/semantics/altIdentifier/url/https://40jaiio.sadio.org.ar/sites/default/files/T2011/SIO/701.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2865info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:27:12Zoai:sedici.unlp.edu.ar:10915/139314Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:27:12.759SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case |
title |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case |
spellingShingle |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case Vecchia, Eugenio Della Ciencias Informáticas Semi-Markov decision processes Rolling horizon Discounted criterion |
title_short |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case |
title_full |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case |
title_fullStr |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case |
title_full_unstemmed |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case |
title_sort |
Rolling Horizon Procedure on Controlled Semi-Markov Models. The Discounted Case |
dc.creator.none.fl_str_mv |
Vecchia, Eugenio Della Di Marco, Silvia Jean-Marie, Alain |
author |
Vecchia, Eugenio Della |
author_facet |
Vecchia, Eugenio Della Di Marco, Silvia Jean-Marie, Alain |
author_role |
author |
author2 |
Di Marco, Silvia Jean-Marie, Alain |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Semi-Markov decision processes Rolling horizon Discounted criterion |
topic |
Ciencias Informáticas Semi-Markov decision processes Rolling horizon Discounted criterion |
dc.description.none.fl_txt_mv |
We study the behavior of the rolling horizon procedure for semi-Markov decision processes, with infinite-horizon discounted reward, when the state space is a Borel set and the action spaces are considered compact. We prove the convergence of the rewards produced by the rolling horizon policies to the optimal reward function, when the horizon length tends to infinity, under different assumptions on the instantaneous reward function. The approach is based on extensions of the results obtained in [7] for the discrete-time Markov decision process case and in [3] for the case of discrete-time Markov games. Finally, we also analyse the performance of an approximate rolling horizon procedure. Sociedad Argentina de Informática e Investigación Operativa |
description |
We study the behavior of the rolling horizon procedure for semi-Markov decision processes, with infinite-horizon discounted reward, when the state space is a Borel set and the action spaces are considered compact. We prove the convergence of the rewards produced by the rolling horizon policies to the optimal reward function, when the horizon length tends to infinity, under different assumptions on the instantaneous reward function. The approach is based on extensions of the results obtained in [7] for the discrete-time Markov decision process case and in [3] for the case of discrete-time Markov games. Finally, we also analyse the performance of an approximate rolling horizon procedure. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/139314 |
url |
http://sedici.unlp.edu.ar/handle/10915/139314 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://40jaiio.sadio.org.ar/sites/default/files/T2011/SIO/701.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2865 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 25-37 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064319412830208 |
score |
13.22299 |