Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning

Autores
Zàrate, Marcos; Lewis, Mirtha Noemí
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
WEKA
Inteligencia Artificial
Data mining
ecología del paisaje
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/56749

id SEDICI_008a240cfe7dfe6058bc182b13f0754e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/56749
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine LearningZàrate, MarcosLewis, Mirtha NoemíCiencias InformáticasWEKAInteligencia ArtificialData miningecología del paisajePrediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%.XIII Workshop Bases de datos y Minería de Datos (WBDMD).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf692-701http://sedici.unlp.edu.ar/handle/10915/56749spainfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:06:08Zoai:sedici.unlp.edu.ar:10915/56749Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:06:08.376SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
title Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
spellingShingle Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
Zàrate, Marcos
Ciencias Informáticas
WEKA
Inteligencia Artificial
Data mining
ecología del paisaje
title_short Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
title_full Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
title_fullStr Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
title_full_unstemmed Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
title_sort Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
dc.creator.none.fl_str_mv Zàrate, Marcos
Lewis, Mirtha Noemí
author Zàrate, Marcos
author_facet Zàrate, Marcos
Lewis, Mirtha Noemí
author_role author
author2 Lewis, Mirtha Noemí
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
WEKA
Inteligencia Artificial
Data mining
ecología del paisaje
topic Ciencias Informáticas
WEKA
Inteligencia Artificial
Data mining
ecología del paisaje
dc.description.none.fl_txt_mv Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI)
description Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/56749
url http://sedici.unlp.edu.ar/handle/10915/56749
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/reference/hdl/10915/55718
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
692-701
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615932188557312
score 13.069144