Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning
- Autores
- Zàrate, Marcos; Lewis, Mirtha Noemí
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
WEKA
Inteligencia Artificial
Data mining
ecología del paisaje - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56749
Ver los metadatos del registro completo
id |
SEDICI_008a240cfe7dfe6058bc182b13f0754e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56749 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine LearningZàrate, MarcosLewis, Mirtha NoemíCiencias InformáticasWEKAInteligencia ArtificialData miningecología del paisajePrediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%.XIII Workshop Bases de datos y Minería de Datos (WBDMD).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf692-701http://sedici.unlp.edu.ar/handle/10915/56749spainfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:06:08Zoai:sedici.unlp.edu.ar:10915/56749Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:06:08.376SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
spellingShingle |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning Zàrate, Marcos Ciencias Informáticas WEKA Inteligencia Artificial Data mining ecología del paisaje |
title_short |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_full |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_fullStr |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_full_unstemmed |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
title_sort |
Estimación del plano anestésico en elefante marinos del sur utilizando técnicas de Machine Learning |
dc.creator.none.fl_str_mv |
Zàrate, Marcos Lewis, Mirtha Noemí |
author |
Zàrate, Marcos |
author_facet |
Zàrate, Marcos Lewis, Mirtha Noemí |
author_role |
author |
author2 |
Lewis, Mirtha Noemí |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas WEKA Inteligencia Artificial Data mining ecología del paisaje |
topic |
Ciencias Informáticas WEKA Inteligencia Artificial Data mining ecología del paisaje |
dc.description.none.fl_txt_mv |
Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%. XIII Workshop Bases de datos y Minería de Datos (WBDMD). Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Prediction systems are techniques that build and study new forecasts through a branch of the artificial intelligence called Machine Learning. In this work we intend to estimate the time that remains anesthetized an southern elephant seal to which you have applied a combination of drugs (Zoletil®), the fundamental objective of anesthesia is to avoid risky situations to researchers studying this species. To know these times data mining techniques and algorithms used particular classification algorithms were compared J4.8, SMO, Random Tree, NBTree y Naïve Bayes with data mining tool Weka and a data set containing the records of 96 individuals undergoing anesthesia procedure. It is concluded that after tests Random Tree was the classification algorithm that best responded, making this an accuracy of 98.79%. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56749 |
url |
http://sedici.unlp.edu.ar/handle/10915/56749 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/reference/hdl/10915/55718 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 692-701 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615932188557312 |
score |
13.069144 |