Transferencia Lluvia-Caudal: Parte II

Autores
Basile, Pedro A.
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
El hidrograma unitario (HU) se deduce a partir de registros de precipitación y caudales en la sección de control y es válido específicamente para la cuenca aforada en cuestión, tal como se describió en el Capítulo VI. Sin embargo, cuando sea necesario determinar el HU de una subcuenca de la misma o de cuencas vecinas, con características físicas similares, que no poseen registros simultáneos de precipitación y caudales, se deben utilizar hidrogramas unitarios sintéticos (HUS). Si las leyes geomorfológicas generales, que rigen la respuesta de la cuenca, fueran conocidas, sería posible utilizarlas para determinar relaciones entre hidrogramas unitarios de cuencas de diferentes áreas de drenaje, pendientes, densidad de drenaje, etc. Desafortunadamente tales leyes no existen actualmente (no de validez general) y por lo tanto el problema debe ser abordado empíricamente o con razonamientos y argumentaciones conceptuales. El problema es bastante complejo. Para hacer una analogía con la hidráulica basta pensar en la dificultad de analizar los efectos de escala en un modelo físico sin conocer los criterios de similitud de Froude y Reynolds. El desarrollo de hidrogramas unitarios sintéticos (HUS), a partir de un abordaje empírico (Snyder, 1939; Commons, 1942; Edson, 1951; Mockus, 1959; en Dooge 1984) ha seguido un patrón estándar. En primer lugar, se selecciona un determinado número de variables que definen el hidrograma unitario. Contemporáneamente se selecciona un determinado número de características físicas de la cuenca. Sucesivamente, para un grupo de cuencas con características físicas similares y con adecuados registros de precipitación y caudales, se derivan los correspondientes hidrogramas unitarios y se cuantifican las variables seleccionadas del hidrograma unitario. Dichas variables son posteriormente correlacionadas con las características físicas de las cuencas, y se determinan los parámetros de ajuste o calibración. Tales correlaciones pueden ser utilizadas para obtener el hidrograma unitario (sintético) en una cuenca no aforada de características físicas similares a aquellas empleadas en el estudio. Las variables usualmente seleccionadas para definir el hidrograma unitario son: duración de precipitación neta tn, tiempo de retardo tp (intervalo entre centro de masa de la precipitación neta y el pico del hidrograma), tiempo de ocurrencia al pico Tp (intervalo entre el comienzo de la precipitación neta y el pico del hidrograma), tiempo de base tb, caudal pico qp, tiempo medio de retardo debido a almacenamiento K, etc. Las variables que representan las características físicas de las cuencas son: longitud del curso principal L, longitud medida en el curso principal desde la sección de control al centroide de la cuenca LC, pendiente media del curso principal Sb, área de la cuenca A, etc. El desarrollo de HUS a partir de razonamientos conceptuales, sobre el funcionamiento hidrológico de una cuenca, tiene inicio con la modificación del método racional por parte de Hawken para considerar la no uniformidad espacial de la precipitación (Hawken, 1921). Esto dio inicio a los métodos basados en la curva TAC (tiempo-área-concentración). Posteriormente, Clark (1945) propuso realizar la propagación de la curva TAC a través de un elemento ficticio de embalse lineal, introduciendo de esta manera los efectos de retardo y atenuación producidos por la cuenca. Mas tarde, O´Kelly (1955) representó una curva TAC sintética, que consistía en un triángulo isósceles (Dooge, 1984). Sucesivamente se desarrollaron los denominados modelos conceptuales de hidrograma unitario, tales como, el de cascada de embalses lineales (Nash, 1957, 1959) o embalse lineal y canal lineal (Dooge, 1973).
Materia
Transformación Lluvia-Caudal
Modelos empíricos
Hidrogramas Unitarios Sintéticos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
RepHipUNR (UNR)
Institución
Universidad Nacional de Rosario
OAI Identificador
oai:rephip.unr.edu.ar:2133/23799

id RepHipUNR_86754ad6bf635c4fa0c6020d7e6fb5db
oai_identifier_str oai:rephip.unr.edu.ar:2133/23799
network_acronym_str RepHipUNR
repository_id_str 1550
network_name_str RepHipUNR (UNR)
spelling Transferencia Lluvia-Caudal: Parte IIBasile, Pedro A.Transformación Lluvia-CaudalModelos empíricosHidrogramas Unitarios SintéticosEl hidrograma unitario (HU) se deduce a partir de registros de precipitación y caudales en la sección de control y es válido específicamente para la cuenca aforada en cuestión, tal como se describió en el Capítulo VI. Sin embargo, cuando sea necesario determinar el HU de una subcuenca de la misma o de cuencas vecinas, con características físicas similares, que no poseen registros simultáneos de precipitación y caudales, se deben utilizar hidrogramas unitarios sintéticos (HUS). Si las leyes geomorfológicas generales, que rigen la respuesta de la cuenca, fueran conocidas, sería posible utilizarlas para determinar relaciones entre hidrogramas unitarios de cuencas de diferentes áreas de drenaje, pendientes, densidad de drenaje, etc. Desafortunadamente tales leyes no existen actualmente (no de validez general) y por lo tanto el problema debe ser abordado empíricamente o con razonamientos y argumentaciones conceptuales. El problema es bastante complejo. Para hacer una analogía con la hidráulica basta pensar en la dificultad de analizar los efectos de escala en un modelo físico sin conocer los criterios de similitud de Froude y Reynolds. El desarrollo de hidrogramas unitarios sintéticos (HUS), a partir de un abordaje empírico (Snyder, 1939; Commons, 1942; Edson, 1951; Mockus, 1959; en Dooge 1984) ha seguido un patrón estándar. En primer lugar, se selecciona un determinado número de variables que definen el hidrograma unitario. Contemporáneamente se selecciona un determinado número de características físicas de la cuenca. Sucesivamente, para un grupo de cuencas con características físicas similares y con adecuados registros de precipitación y caudales, se derivan los correspondientes hidrogramas unitarios y se cuantifican las variables seleccionadas del hidrograma unitario. Dichas variables son posteriormente correlacionadas con las características físicas de las cuencas, y se determinan los parámetros de ajuste o calibración. Tales correlaciones pueden ser utilizadas para obtener el hidrograma unitario (sintético) en una cuenca no aforada de características físicas similares a aquellas empleadas en el estudio. Las variables usualmente seleccionadas para definir el hidrograma unitario son: duración de precipitación neta tn, tiempo de retardo tp (intervalo entre centro de masa de la precipitación neta y el pico del hidrograma), tiempo de ocurrencia al pico Tp (intervalo entre el comienzo de la precipitación neta y el pico del hidrograma), tiempo de base tb, caudal pico qp, tiempo medio de retardo debido a almacenamiento K, etc. Las variables que representan las características físicas de las cuencas son: longitud del curso principal L, longitud medida en el curso principal desde la sección de control al centroide de la cuenca LC, pendiente media del curso principal Sb, área de la cuenca A, etc. El desarrollo de HUS a partir de razonamientos conceptuales, sobre el funcionamiento hidrológico de una cuenca, tiene inicio con la modificación del método racional por parte de Hawken para considerar la no uniformidad espacial de la precipitación (Hawken, 1921). Esto dio inicio a los métodos basados en la curva TAC (tiempo-área-concentración). Posteriormente, Clark (1945) propuso realizar la propagación de la curva TAC a través de un elemento ficticio de embalse lineal, introduciendo de esta manera los efectos de retardo y atenuación producidos por la cuenca. Mas tarde, O´Kelly (1955) representó una curva TAC sintética, que consistía en un triángulo isósceles (Dooge, 1984). Sucesivamente se desarrollaron los denominados modelos conceptuales de hidrograma unitario, tales como, el de cascada de embalses lineales (Nash, 1957, 1959) o embalse lineal y canal lineal (Dooge, 1973).UNR Editora2017info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttp://hdl.handle.net/2133/23799urn:isbn: 978-987-702-214-8spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-11T10:21:13Zoai:rephip.unr.edu.ar:2133/23799instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-11 10:21:13.396RepHipUNR (UNR) - Universidad Nacional de Rosariofalse
dc.title.none.fl_str_mv Transferencia Lluvia-Caudal: Parte II
title Transferencia Lluvia-Caudal: Parte II
spellingShingle Transferencia Lluvia-Caudal: Parte II
Basile, Pedro A.
Transformación Lluvia-Caudal
Modelos empíricos
Hidrogramas Unitarios Sintéticos
title_short Transferencia Lluvia-Caudal: Parte II
title_full Transferencia Lluvia-Caudal: Parte II
title_fullStr Transferencia Lluvia-Caudal: Parte II
title_full_unstemmed Transferencia Lluvia-Caudal: Parte II
title_sort Transferencia Lluvia-Caudal: Parte II
dc.creator.none.fl_str_mv Basile, Pedro A.
author Basile, Pedro A.
author_facet Basile, Pedro A.
author_role author
dc.subject.none.fl_str_mv Transformación Lluvia-Caudal
Modelos empíricos
Hidrogramas Unitarios Sintéticos
topic Transformación Lluvia-Caudal
Modelos empíricos
Hidrogramas Unitarios Sintéticos
dc.description.none.fl_txt_mv El hidrograma unitario (HU) se deduce a partir de registros de precipitación y caudales en la sección de control y es válido específicamente para la cuenca aforada en cuestión, tal como se describió en el Capítulo VI. Sin embargo, cuando sea necesario determinar el HU de una subcuenca de la misma o de cuencas vecinas, con características físicas similares, que no poseen registros simultáneos de precipitación y caudales, se deben utilizar hidrogramas unitarios sintéticos (HUS). Si las leyes geomorfológicas generales, que rigen la respuesta de la cuenca, fueran conocidas, sería posible utilizarlas para determinar relaciones entre hidrogramas unitarios de cuencas de diferentes áreas de drenaje, pendientes, densidad de drenaje, etc. Desafortunadamente tales leyes no existen actualmente (no de validez general) y por lo tanto el problema debe ser abordado empíricamente o con razonamientos y argumentaciones conceptuales. El problema es bastante complejo. Para hacer una analogía con la hidráulica basta pensar en la dificultad de analizar los efectos de escala en un modelo físico sin conocer los criterios de similitud de Froude y Reynolds. El desarrollo de hidrogramas unitarios sintéticos (HUS), a partir de un abordaje empírico (Snyder, 1939; Commons, 1942; Edson, 1951; Mockus, 1959; en Dooge 1984) ha seguido un patrón estándar. En primer lugar, se selecciona un determinado número de variables que definen el hidrograma unitario. Contemporáneamente se selecciona un determinado número de características físicas de la cuenca. Sucesivamente, para un grupo de cuencas con características físicas similares y con adecuados registros de precipitación y caudales, se derivan los correspondientes hidrogramas unitarios y se cuantifican las variables seleccionadas del hidrograma unitario. Dichas variables son posteriormente correlacionadas con las características físicas de las cuencas, y se determinan los parámetros de ajuste o calibración. Tales correlaciones pueden ser utilizadas para obtener el hidrograma unitario (sintético) en una cuenca no aforada de características físicas similares a aquellas empleadas en el estudio. Las variables usualmente seleccionadas para definir el hidrograma unitario son: duración de precipitación neta tn, tiempo de retardo tp (intervalo entre centro de masa de la precipitación neta y el pico del hidrograma), tiempo de ocurrencia al pico Tp (intervalo entre el comienzo de la precipitación neta y el pico del hidrograma), tiempo de base tb, caudal pico qp, tiempo medio de retardo debido a almacenamiento K, etc. Las variables que representan las características físicas de las cuencas son: longitud del curso principal L, longitud medida en el curso principal desde la sección de control al centroide de la cuenca LC, pendiente media del curso principal Sb, área de la cuenca A, etc. El desarrollo de HUS a partir de razonamientos conceptuales, sobre el funcionamiento hidrológico de una cuenca, tiene inicio con la modificación del método racional por parte de Hawken para considerar la no uniformidad espacial de la precipitación (Hawken, 1921). Esto dio inicio a los métodos basados en la curva TAC (tiempo-área-concentración). Posteriormente, Clark (1945) propuso realizar la propagación de la curva TAC a través de un elemento ficticio de embalse lineal, introduciendo de esta manera los efectos de retardo y atenuación producidos por la cuenca. Mas tarde, O´Kelly (1955) representó una curva TAC sintética, que consistía en un triángulo isósceles (Dooge, 1984). Sucesivamente se desarrollaron los denominados modelos conceptuales de hidrograma unitario, tales como, el de cascada de embalses lineales (Nash, 1957, 1959) o embalse lineal y canal lineal (Dooge, 1973).
description El hidrograma unitario (HU) se deduce a partir de registros de precipitación y caudales en la sección de control y es válido específicamente para la cuenca aforada en cuestión, tal como se describió en el Capítulo VI. Sin embargo, cuando sea necesario determinar el HU de una subcuenca de la misma o de cuencas vecinas, con características físicas similares, que no poseen registros simultáneos de precipitación y caudales, se deben utilizar hidrogramas unitarios sintéticos (HUS). Si las leyes geomorfológicas generales, que rigen la respuesta de la cuenca, fueran conocidas, sería posible utilizarlas para determinar relaciones entre hidrogramas unitarios de cuencas de diferentes áreas de drenaje, pendientes, densidad de drenaje, etc. Desafortunadamente tales leyes no existen actualmente (no de validez general) y por lo tanto el problema debe ser abordado empíricamente o con razonamientos y argumentaciones conceptuales. El problema es bastante complejo. Para hacer una analogía con la hidráulica basta pensar en la dificultad de analizar los efectos de escala en un modelo físico sin conocer los criterios de similitud de Froude y Reynolds. El desarrollo de hidrogramas unitarios sintéticos (HUS), a partir de un abordaje empírico (Snyder, 1939; Commons, 1942; Edson, 1951; Mockus, 1959; en Dooge 1984) ha seguido un patrón estándar. En primer lugar, se selecciona un determinado número de variables que definen el hidrograma unitario. Contemporáneamente se selecciona un determinado número de características físicas de la cuenca. Sucesivamente, para un grupo de cuencas con características físicas similares y con adecuados registros de precipitación y caudales, se derivan los correspondientes hidrogramas unitarios y se cuantifican las variables seleccionadas del hidrograma unitario. Dichas variables son posteriormente correlacionadas con las características físicas de las cuencas, y se determinan los parámetros de ajuste o calibración. Tales correlaciones pueden ser utilizadas para obtener el hidrograma unitario (sintético) en una cuenca no aforada de características físicas similares a aquellas empleadas en el estudio. Las variables usualmente seleccionadas para definir el hidrograma unitario son: duración de precipitación neta tn, tiempo de retardo tp (intervalo entre centro de masa de la precipitación neta y el pico del hidrograma), tiempo de ocurrencia al pico Tp (intervalo entre el comienzo de la precipitación neta y el pico del hidrograma), tiempo de base tb, caudal pico qp, tiempo medio de retardo debido a almacenamiento K, etc. Las variables que representan las características físicas de las cuencas son: longitud del curso principal L, longitud medida en el curso principal desde la sección de control al centroide de la cuenca LC, pendiente media del curso principal Sb, área de la cuenca A, etc. El desarrollo de HUS a partir de razonamientos conceptuales, sobre el funcionamiento hidrológico de una cuenca, tiene inicio con la modificación del método racional por parte de Hawken para considerar la no uniformidad espacial de la precipitación (Hawken, 1921). Esto dio inicio a los métodos basados en la curva TAC (tiempo-área-concentración). Posteriormente, Clark (1945) propuso realizar la propagación de la curva TAC a través de un elemento ficticio de embalse lineal, introduciendo de esta manera los efectos de retardo y atenuación producidos por la cuenca. Mas tarde, O´Kelly (1955) representó una curva TAC sintética, que consistía en un triángulo isósceles (Dooge, 1984). Sucesivamente se desarrollaron los denominados modelos conceptuales de hidrograma unitario, tales como, el de cascada de embalses lineales (Nash, 1957, 1959) o embalse lineal y canal lineal (Dooge, 1973).
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart


info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/2133/23799
urn:isbn: 978-987-702-214-8
url http://hdl.handle.net/2133/23799
identifier_str_mv urn:isbn: 978-987-702-214-8
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Licencia RepHip
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Licencia RepHip
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UNR Editora
publisher.none.fl_str_mv UNR Editora
dc.source.none.fl_str_mv reponame:RepHipUNR (UNR)
instname:Universidad Nacional de Rosario
reponame_str RepHipUNR (UNR)
collection RepHipUNR (UNR)
instname_str Universidad Nacional de Rosario
repository.name.fl_str_mv RepHipUNR (UNR) - Universidad Nacional de Rosario
repository.mail.fl_str_mv rephip@unr.edu.ar
_version_ 1842975081895034880
score 12.993085