Detección de ataques maliciosos con aprendizaje automatizado

Autores
Perrone, Gustavo Andrés
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión aceptada
Colaborador/a o director/a de tesis
Grieco, Gustavo
Grinblat, Guillermo
Descripción
Año a año nuestras vidas dependen cada vez más de la tecnología, y de estar conectados a través de Internet. Progresivamente más y más objetos se conectan a Internet para facilitarnos diferentes funcionalidades. Celulares, autos, heladeras, cuentas bancarias, luces, casas, cámaras, televisores, etc. Estas conexiones nos brindan muchas ventajas y facilidades, pero a su vez aumentan la vulnerabilidad frente a ataques cibernéticos maliciosos. Estos pueden hacer caer sistemas, causar perdidas de datos, robar información privada, mover dinero, y muchos otros problemas. En los últimos años han surgido nuevos ataques sofisticado, persistentes y con objetivos concretos. Estas nuevas amenazas son denominadas Advanced Persistent Threats (Amenazas Persistentes y Avanzadas), también llamados APT. Estos ataques pueden perseguir objetivos económicos (espionaje), militares (búsquedas de debilidades, revelación de información), técnicos (credenciales, código fuente) o políticos (provocar desestabilización o desorganización, debilitar misiones diplomáticas). En vista de esta situación, y con el propósito de detectar y protegerse de estos ataques, ya no alcanza con programas tales como sistemas de detección de intrusos o antivirus que utilizan sistemas de reglas para detectar amenazas conocidas, si no que es necesario intentar prever lo desconocido. Día a día se investigan nuevas formas de detectar y prevenir amenazas en la red, generalmente utilizando técnicas de Aprendizaje Automatizado. Desgraciadamente, la detección de estos ataques altamente dirigidos requiere de grandes cantidades de datos que no están disponibles públicamente. Es por eso que esta tesina se centra en la detección de tráfico malicioso más general. Pero ¿qué técnicas son realmente efectivas en la práctica?, ¿son realmente implementables?, ¿qué se necesita para utilizarlas con éxito? En este trabajo muestro los resultados de investigar, probar y analizar varios de los algoritmos publicados, comprobando si son realmente aptos para utilizarse en situaciones reales.
Fil: Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura.Departamento de Ciencias de la Computación
Materia
detección
ataques maliciosos
aprendizaje automatizado
ciberseguridad
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución – No Comercial – Compartir Igual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.
Repositorio
RepHipUNR (UNR)
Institución
Universidad Nacional de Rosario
OAI Identificador
oai:rephip.unr.edu.ar:2133/26030

id RepHipUNR_56bd3eccb15bd7ace162de5918a2941a
oai_identifier_str oai:rephip.unr.edu.ar:2133/26030
network_acronym_str RepHipUNR
repository_id_str 1550
network_name_str RepHipUNR (UNR)
spelling Detección de ataques maliciosos con aprendizaje automatizadoPerrone, Gustavo Andrésdetecciónataques maliciososaprendizaje automatizadociberseguridadAño a año nuestras vidas dependen cada vez más de la tecnología, y de estar conectados a través de Internet. Progresivamente más y más objetos se conectan a Internet para facilitarnos diferentes funcionalidades. Celulares, autos, heladeras, cuentas bancarias, luces, casas, cámaras, televisores, etc. Estas conexiones nos brindan muchas ventajas y facilidades, pero a su vez aumentan la vulnerabilidad frente a ataques cibernéticos maliciosos. Estos pueden hacer caer sistemas, causar perdidas de datos, robar información privada, mover dinero, y muchos otros problemas. En los últimos años han surgido nuevos ataques sofisticado, persistentes y con objetivos concretos. Estas nuevas amenazas son denominadas Advanced Persistent Threats (Amenazas Persistentes y Avanzadas), también llamados APT. Estos ataques pueden perseguir objetivos económicos (espionaje), militares (búsquedas de debilidades, revelación de información), técnicos (credenciales, código fuente) o políticos (provocar desestabilización o desorganización, debilitar misiones diplomáticas). En vista de esta situación, y con el propósito de detectar y protegerse de estos ataques, ya no alcanza con programas tales como sistemas de detección de intrusos o antivirus que utilizan sistemas de reglas para detectar amenazas conocidas, si no que es necesario intentar prever lo desconocido. Día a día se investigan nuevas formas de detectar y prevenir amenazas en la red, generalmente utilizando técnicas de Aprendizaje Automatizado. Desgraciadamente, la detección de estos ataques altamente dirigidos requiere de grandes cantidades de datos que no están disponibles públicamente. Es por eso que esta tesina se centra en la detección de tráfico malicioso más general. Pero ¿qué técnicas son realmente efectivas en la práctica?, ¿son realmente implementables?, ¿qué se necesita para utilizarlas con éxito? En este trabajo muestro los resultados de investigar, probar y analizar varios de los algoritmos publicados, comprobando si son realmente aptos para utilizarse en situaciones reales.Fil: Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura.Departamento de Ciencias de la ComputaciónGrieco, GustavoGrinblat, Guillermo2018-07info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://hdl.handle.net/2133/26030spainfo:eu-repo/semantics/openAccessAtribución – No Comercial – Compartir Igual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.http://creativecommons.org/licenses/by/2.5/ar/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-29T13:41:32Zoai:rephip.unr.edu.ar:2133/26030instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-29 13:41:33.069RepHipUNR (UNR) - Universidad Nacional de Rosariofalse
dc.title.none.fl_str_mv Detección de ataques maliciosos con aprendizaje automatizado
title Detección de ataques maliciosos con aprendizaje automatizado
spellingShingle Detección de ataques maliciosos con aprendizaje automatizado
Perrone, Gustavo Andrés
detección
ataques maliciosos
aprendizaje automatizado
ciberseguridad
title_short Detección de ataques maliciosos con aprendizaje automatizado
title_full Detección de ataques maliciosos con aprendizaje automatizado
title_fullStr Detección de ataques maliciosos con aprendizaje automatizado
title_full_unstemmed Detección de ataques maliciosos con aprendizaje automatizado
title_sort Detección de ataques maliciosos con aprendizaje automatizado
dc.creator.none.fl_str_mv Perrone, Gustavo Andrés
author Perrone, Gustavo Andrés
author_facet Perrone, Gustavo Andrés
author_role author
dc.contributor.none.fl_str_mv Grieco, Gustavo
Grinblat, Guillermo
dc.subject.none.fl_str_mv detección
ataques maliciosos
aprendizaje automatizado
ciberseguridad
topic detección
ataques maliciosos
aprendizaje automatizado
ciberseguridad
dc.description.none.fl_txt_mv Año a año nuestras vidas dependen cada vez más de la tecnología, y de estar conectados a través de Internet. Progresivamente más y más objetos se conectan a Internet para facilitarnos diferentes funcionalidades. Celulares, autos, heladeras, cuentas bancarias, luces, casas, cámaras, televisores, etc. Estas conexiones nos brindan muchas ventajas y facilidades, pero a su vez aumentan la vulnerabilidad frente a ataques cibernéticos maliciosos. Estos pueden hacer caer sistemas, causar perdidas de datos, robar información privada, mover dinero, y muchos otros problemas. En los últimos años han surgido nuevos ataques sofisticado, persistentes y con objetivos concretos. Estas nuevas amenazas son denominadas Advanced Persistent Threats (Amenazas Persistentes y Avanzadas), también llamados APT. Estos ataques pueden perseguir objetivos económicos (espionaje), militares (búsquedas de debilidades, revelación de información), técnicos (credenciales, código fuente) o políticos (provocar desestabilización o desorganización, debilitar misiones diplomáticas). En vista de esta situación, y con el propósito de detectar y protegerse de estos ataques, ya no alcanza con programas tales como sistemas de detección de intrusos o antivirus que utilizan sistemas de reglas para detectar amenazas conocidas, si no que es necesario intentar prever lo desconocido. Día a día se investigan nuevas formas de detectar y prevenir amenazas en la red, generalmente utilizando técnicas de Aprendizaje Automatizado. Desgraciadamente, la detección de estos ataques altamente dirigidos requiere de grandes cantidades de datos que no están disponibles públicamente. Es por eso que esta tesina se centra en la detección de tráfico malicioso más general. Pero ¿qué técnicas son realmente efectivas en la práctica?, ¿son realmente implementables?, ¿qué se necesita para utilizarlas con éxito? En este trabajo muestro los resultados de investigar, probar y analizar varios de los algoritmos publicados, comprobando si son realmente aptos para utilizarse en situaciones reales.
Fil: Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura.Departamento de Ciencias de la Computación
description Año a año nuestras vidas dependen cada vez más de la tecnología, y de estar conectados a través de Internet. Progresivamente más y más objetos se conectan a Internet para facilitarnos diferentes funcionalidades. Celulares, autos, heladeras, cuentas bancarias, luces, casas, cámaras, televisores, etc. Estas conexiones nos brindan muchas ventajas y facilidades, pero a su vez aumentan la vulnerabilidad frente a ataques cibernéticos maliciosos. Estos pueden hacer caer sistemas, causar perdidas de datos, robar información privada, mover dinero, y muchos otros problemas. En los últimos años han surgido nuevos ataques sofisticado, persistentes y con objetivos concretos. Estas nuevas amenazas son denominadas Advanced Persistent Threats (Amenazas Persistentes y Avanzadas), también llamados APT. Estos ataques pueden perseguir objetivos económicos (espionaje), militares (búsquedas de debilidades, revelación de información), técnicos (credenciales, código fuente) o políticos (provocar desestabilización o desorganización, debilitar misiones diplomáticas). En vista de esta situación, y con el propósito de detectar y protegerse de estos ataques, ya no alcanza con programas tales como sistemas de detección de intrusos o antivirus que utilizan sistemas de reglas para detectar amenazas conocidas, si no que es necesario intentar prever lo desconocido. Día a día se investigan nuevas formas de detectar y prevenir amenazas en la red, generalmente utilizando técnicas de Aprendizaje Automatizado. Desgraciadamente, la detección de estos ataques altamente dirigidos requiere de grandes cantidades de datos que no están disponibles públicamente. Es por eso que esta tesina se centra en la detección de tráfico malicioso más general. Pero ¿qué técnicas son realmente efectivas en la práctica?, ¿son realmente implementables?, ¿qué se necesita para utilizarlas con éxito? En este trabajo muestro los resultados de investigar, probar y analizar varios de los algoritmos publicados, comprobando si son realmente aptos para utilizarse en situaciones reales.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/2133/26030
url http://hdl.handle.net/2133/26030
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución – No Comercial – Compartir Igual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.
http://creativecommons.org/licenses/by/2.5/ar/
Licencia RepHip
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución – No Comercial – Compartir Igual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.
http://creativecommons.org/licenses/by/2.5/ar/
Licencia RepHip
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:RepHipUNR (UNR)
instname:Universidad Nacional de Rosario
reponame_str RepHipUNR (UNR)
collection RepHipUNR (UNR)
instname_str Universidad Nacional de Rosario
repository.name.fl_str_mv RepHipUNR (UNR) - Universidad Nacional de Rosario
repository.mail.fl_str_mv rephip@unr.edu.ar
_version_ 1844618787073032192
score 13.070432