Estimación robusta de la función de autocorrelación

Autores
Bonifazi, Fernanda; Méndez, Fernanda
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión aceptada
Descripción
En este trabajo se aborda el problema de la robustez de la función de autocorrelación muestral, y se proponen dos estimadores: uno basado en un estimador robusto de escala y la función de autocorrelación truncada. Se realiza un estudio de simulaciones para investigar y comparar el comportamiento del estimador clásico -FACM- y estos dos nuevos estimadores en procesos contaminados con valores atípicos. Se observa que la FACM no es resistente a la presencia de observaciones extremas y se confirma la robustez de la FACMR en situaciones con outliers de diferentes magnitudes. Por lo tanto, dado que en la práctica se suele desconocer la existencia de valores extremos, se aconseja calcular conjuntamente el estimador clásico y los estimadores robustos de la función de autocorrelación. Si dichas estimaciones son similares, se puede asumir que el efecto de los valores atípicos es insignificante. Por el contrario, si son significativamente diferentes, se debe actuar con cuidado. Queda pendiente el análisis del desempeño de estos estimadores en presencia de múltiples datos atípicos en la serie y en el caso de procesos con estacionalidad.
The autocorrelation function plays an important role in time series analysis. It is often used to study the underlying dependence structure of the process (Wei, 2006; Brockwell and Davis, 1991). This is an important step in constructing an appropriate mathematical model for the data. Therefore, it is important to have a sample autocorrelation function which remains close to the true underlying autocorrelation function, even when outliers are present in the data. Otherwise, important goals of the time series analysis, such as inference and forecasting, can be non-informative. Unfortunately, widely used sample autocorrelation function based on the method of moments (SACF) is not robust. The presence of outliers can greatly distort the whole picture of SACF and lead to an erroneous identification of the underlying process. In this paper we propose to study two new estimators: one based on a robust estimator of scale (Ma & Genton, 1998) and the trimmed sample autocorrelation function (Chan & Wei, 1992). The performance of the new estimators and the classical estimator -FACM/SACF - are compared in a simulation study
Fil: Fil: Bonifazi, Fernanda Facultad Ciencias Económicas y Estadística; Universidad Nacional de Rosario; Argentina
Materia
n.d.
n.d.
n.d.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución – No Comercial – Compartir Igual (by-nc-sa)
Repositorio
RepHipUNR (UNR)
Institución
Universidad Nacional de Rosario
OAI Identificador
oai:rephip.unr.edu.ar:2133/7505

id RepHipUNR_22b579d042d3173a34676f05b105034d
oai_identifier_str oai:rephip.unr.edu.ar:2133/7505
network_acronym_str RepHipUNR
repository_id_str 1550
network_name_str RepHipUNR (UNR)
spelling Estimación robusta de la función de autocorrelaciónBonifazi, FernandaMéndez, Fernandan.d.n.d.n.d.En este trabajo se aborda el problema de la robustez de la función de autocorrelación muestral, y se proponen dos estimadores: uno basado en un estimador robusto de escala y la función de autocorrelación truncada. Se realiza un estudio de simulaciones para investigar y comparar el comportamiento del estimador clásico -FACM- y estos dos nuevos estimadores en procesos contaminados con valores atípicos. Se observa que la FACM no es resistente a la presencia de observaciones extremas y se confirma la robustez de la FACMR en situaciones con outliers de diferentes magnitudes. Por lo tanto, dado que en la práctica se suele desconocer la existencia de valores extremos, se aconseja calcular conjuntamente el estimador clásico y los estimadores robustos de la función de autocorrelación. Si dichas estimaciones son similares, se puede asumir que el efecto de los valores atípicos es insignificante. Por el contrario, si son significativamente diferentes, se debe actuar con cuidado. Queda pendiente el análisis del desempeño de estos estimadores en presencia de múltiples datos atípicos en la serie y en el caso de procesos con estacionalidad.The autocorrelation function plays an important role in time series analysis. It is often used to study the underlying dependence structure of the process (Wei, 2006; Brockwell and Davis, 1991). This is an important step in constructing an appropriate mathematical model for the data. Therefore, it is important to have a sample autocorrelation function which remains close to the true underlying autocorrelation function, even when outliers are present in the data. Otherwise, important goals of the time series analysis, such as inference and forecasting, can be non-informative. Unfortunately, widely used sample autocorrelation function based on the method of moments (SACF) is not robust. The presence of outliers can greatly distort the whole picture of SACF and lead to an erroneous identification of the underlying process. In this paper we propose to study two new estimators: one based on a robust estimator of scale (Ma & Genton, 1998) and the trimmed sample autocorrelation function (Chan & Wei, 1992). The performance of the new estimators and the classical estimator -FACM/SACF - are compared in a simulation studyFil: Fil: Bonifazi, Fernanda Facultad Ciencias Económicas y Estadística; Universidad Nacional de Rosario; ArgentinaSecretaría de Ciencia y Tecnología. Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario2014-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/2133/7505urn:issn: 1668-5008spainfo:eu-repo/semantics/openAccessAtribución – No Comercial – Compartir Igual (by-nc-sa)http://creativecommons.org/licenses/by-nc-sa/2.5/ar/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-29T13:41:08Zoai:rephip.unr.edu.ar:2133/7505instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-29 13:41:09.088RepHipUNR (UNR) - Universidad Nacional de Rosariofalse
dc.title.none.fl_str_mv Estimación robusta de la función de autocorrelación
title Estimación robusta de la función de autocorrelación
spellingShingle Estimación robusta de la función de autocorrelación
Bonifazi, Fernanda
n.d.
n.d.
n.d.
title_short Estimación robusta de la función de autocorrelación
title_full Estimación robusta de la función de autocorrelación
title_fullStr Estimación robusta de la función de autocorrelación
title_full_unstemmed Estimación robusta de la función de autocorrelación
title_sort Estimación robusta de la función de autocorrelación
dc.creator.none.fl_str_mv Bonifazi, Fernanda
Méndez, Fernanda
author Bonifazi, Fernanda
author_facet Bonifazi, Fernanda
Méndez, Fernanda
author_role author
author2 Méndez, Fernanda
author2_role author
dc.contributor.none.fl_str_mv Secretaría de Ciencia y Tecnología. Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario
dc.subject.none.fl_str_mv n.d.
n.d.
n.d.
topic n.d.
n.d.
n.d.
dc.description.none.fl_txt_mv En este trabajo se aborda el problema de la robustez de la función de autocorrelación muestral, y se proponen dos estimadores: uno basado en un estimador robusto de escala y la función de autocorrelación truncada. Se realiza un estudio de simulaciones para investigar y comparar el comportamiento del estimador clásico -FACM- y estos dos nuevos estimadores en procesos contaminados con valores atípicos. Se observa que la FACM no es resistente a la presencia de observaciones extremas y se confirma la robustez de la FACMR en situaciones con outliers de diferentes magnitudes. Por lo tanto, dado que en la práctica se suele desconocer la existencia de valores extremos, se aconseja calcular conjuntamente el estimador clásico y los estimadores robustos de la función de autocorrelación. Si dichas estimaciones son similares, se puede asumir que el efecto de los valores atípicos es insignificante. Por el contrario, si son significativamente diferentes, se debe actuar con cuidado. Queda pendiente el análisis del desempeño de estos estimadores en presencia de múltiples datos atípicos en la serie y en el caso de procesos con estacionalidad.
The autocorrelation function plays an important role in time series analysis. It is often used to study the underlying dependence structure of the process (Wei, 2006; Brockwell and Davis, 1991). This is an important step in constructing an appropriate mathematical model for the data. Therefore, it is important to have a sample autocorrelation function which remains close to the true underlying autocorrelation function, even when outliers are present in the data. Otherwise, important goals of the time series analysis, such as inference and forecasting, can be non-informative. Unfortunately, widely used sample autocorrelation function based on the method of moments (SACF) is not robust. The presence of outliers can greatly distort the whole picture of SACF and lead to an erroneous identification of the underlying process. In this paper we propose to study two new estimators: one based on a robust estimator of scale (Ma & Genton, 1998) and the trimmed sample autocorrelation function (Chan & Wei, 1992). The performance of the new estimators and the classical estimator -FACM/SACF - are compared in a simulation study
Fil: Fil: Bonifazi, Fernanda Facultad Ciencias Económicas y Estadística; Universidad Nacional de Rosario; Argentina
description En este trabajo se aborda el problema de la robustez de la función de autocorrelación muestral, y se proponen dos estimadores: uno basado en un estimador robusto de escala y la función de autocorrelación truncada. Se realiza un estudio de simulaciones para investigar y comparar el comportamiento del estimador clásico -FACM- y estos dos nuevos estimadores en procesos contaminados con valores atípicos. Se observa que la FACM no es resistente a la presencia de observaciones extremas y se confirma la robustez de la FACMR en situaciones con outliers de diferentes magnitudes. Por lo tanto, dado que en la práctica se suele desconocer la existencia de valores extremos, se aconseja calcular conjuntamente el estimador clásico y los estimadores robustos de la función de autocorrelación. Si dichas estimaciones son similares, se puede asumir que el efecto de los valores atípicos es insignificante. Por el contrario, si son significativamente diferentes, se debe actuar con cuidado. Queda pendiente el análisis del desempeño de estos estimadores en presencia de múltiples datos atípicos en la serie y en el caso de procesos con estacionalidad.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject


info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/2133/7505
urn:issn: 1668-5008
url http://hdl.handle.net/2133/7505
identifier_str_mv urn:issn: 1668-5008
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución – No Comercial – Compartir Igual (by-nc-sa)
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Licencia RepHip
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución – No Comercial – Compartir Igual (by-nc-sa)
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Licencia RepHip
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:RepHipUNR (UNR)
instname:Universidad Nacional de Rosario
reponame_str RepHipUNR (UNR)
collection RepHipUNR (UNR)
instname_str Universidad Nacional de Rosario
repository.name.fl_str_mv RepHipUNR (UNR) - Universidad Nacional de Rosario
repository.mail.fl_str_mv rephip@unr.edu.ar
_version_ 1844618780262531072
score 13.070432