Uncertainty principle and geometry of the infinite Grassmann manifold

Autores
Andruchow, Esteban; Corach, Gustavo
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
We study the pairs of projections PIf=?If,QJf=(?Jf) ?, f?L^2(R^n), where I,J?R^n are sets of finite positive Lebesgue measure, ?I,?J denote the corresponding characteristic functions and ?, ? denote the Fourier-Plancherel transformation L^2(R^n)?L^2(R^n) and its inverse. These pairs of projections have been widely studied by several authors in connection with the mathematical formulation of Heisenberg´s uncertainty principle. Our study is done from a differential geometric point of view. We apply known results on the Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that there exists a unique minimal geodesic of P(L^2(R^n)), which is a curve of the ?(t)=e^{itXI,J}P^{Ie?itXI,J} which joins PI and QJ and has length ?/2. Here X_I,J is a selfadjoint operator determined by the sets I,J. As a consequence we deduce that if H is the logarithm of the Fourier-Plancherel map, then ?[H,PI]???/2. The spectrum of X_I,J is denumerable and symmetric with respect to the origin, and it has a smallest positive eigenvalue ?(X_I,J) which satisfies cos(?(X_I,J))=?PIQJ?.
Fuente
Studia Mathematica. Mar. 2019; 248(1): 31-44
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/248
Materia
Projections
Pair of projections
Grassmann maniffold
Uncertainty principle
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1803

id RIUNGS_f49641ee418ceac6652290f6783380fc
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1803
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Uncertainty principle and geometry of the infinite Grassmann manifoldAndruchow, EstebanCorach, GustavoProjectionsPair of projectionsGrassmann maniffoldUncertainty principleFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.We study the pairs of projections PIf=?If,QJf=(?Jf) ?, f?L^2(R^n), where I,J?R^n are sets of finite positive Lebesgue measure, ?I,?J denote the corresponding characteristic functions and ?, ? denote the Fourier-Plancherel transformation L^2(R^n)?L^2(R^n) and its inverse. These pairs of projections have been widely studied by several authors in connection with the mathematical formulation of Heisenberg´s uncertainty principle. Our study is done from a differential geometric point of view. We apply known results on the Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that there exists a unique minimal geodesic of P(L^2(R^n)), which is a curve of the ?(t)=e^{itXI,J}P^{Ie?itXI,J} which joins PI and QJ and has length ?/2. Here X_I,J is a selfadjoint operator determined by the sets I,J. As a consequence we deduce that if H is the logarithm of the Fourier-Plancherel map, then ?[H,PI]???/2. The spectrum of X_I,J is denumerable and symmetric with respect to the origin, and it has a smallest positive eigenvalue ?(X_I,J) which satisfies cos(?(X_I,J))=?PIQJ?.Polish Academy of Sciences. Institute of Mathematics2024-12-23T13:21:46Z2024-12-23T13:21:46Z2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAndruchow, E. y Corach, G. (3-2019). Uncertainty principle and geometry of the infinite Grassmann manifold. Studia Mathematica, 248(1), 31-44.0039-3223http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1803Studia Mathematica. Mar. 2019; 248(1): 31-44https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/248reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoeng10.4064/sm170915-27-12info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-29T15:01:57Zoai:repositorio.ungs.edu.ar:UNGS/1803instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-29 15:01:58.252Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Uncertainty principle and geometry of the infinite Grassmann manifold
title Uncertainty principle and geometry of the infinite Grassmann manifold
spellingShingle Uncertainty principle and geometry of the infinite Grassmann manifold
Andruchow, Esteban
Projections
Pair of projections
Grassmann maniffold
Uncertainty principle
title_short Uncertainty principle and geometry of the infinite Grassmann manifold
title_full Uncertainty principle and geometry of the infinite Grassmann manifold
title_fullStr Uncertainty principle and geometry of the infinite Grassmann manifold
title_full_unstemmed Uncertainty principle and geometry of the infinite Grassmann manifold
title_sort Uncertainty principle and geometry of the infinite Grassmann manifold
dc.creator.none.fl_str_mv Andruchow, Esteban
Corach, Gustavo
author Andruchow, Esteban
author_facet Andruchow, Esteban
Corach, Gustavo
author_role author
author2 Corach, Gustavo
author2_role author
dc.subject.none.fl_str_mv Projections
Pair of projections
Grassmann maniffold
Uncertainty principle
topic Projections
Pair of projections
Grassmann maniffold
Uncertainty principle
dc.description.none.fl_txt_mv Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
We study the pairs of projections PIf=?If,QJf=(?Jf) ?, f?L^2(R^n), where I,J?R^n are sets of finite positive Lebesgue measure, ?I,?J denote the corresponding characteristic functions and ?, ? denote the Fourier-Plancherel transformation L^2(R^n)?L^2(R^n) and its inverse. These pairs of projections have been widely studied by several authors in connection with the mathematical formulation of Heisenberg´s uncertainty principle. Our study is done from a differential geometric point of view. We apply known results on the Finsler geometry of the Grassmann manifold P(H) of a Hilbert space H to establish that there exists a unique minimal geodesic of P(L^2(R^n)), which is a curve of the ?(t)=e^{itXI,J}P^{Ie?itXI,J} which joins PI and QJ and has length ?/2. Here X_I,J is a selfadjoint operator determined by the sets I,J. As a consequence we deduce that if H is the logarithm of the Fourier-Plancherel map, then ?[H,PI]???/2. The spectrum of X_I,J is denumerable and symmetric with respect to the origin, and it has a smallest positive eigenvalue ?(X_I,J) which satisfies cos(?(X_I,J))=?PIQJ?.
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2019
dc.date.none.fl_str_mv 2019
2024-12-23T13:21:46Z
2024-12-23T13:21:46Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Andruchow, E. y Corach, G. (3-2019). Uncertainty principle and geometry of the infinite Grassmann manifold. Studia Mathematica, 248(1), 31-44.
0039-3223
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1803
identifier_str_mv Andruchow, E. y Corach, G. (3-2019). Uncertainty principle and geometry of the infinite Grassmann manifold. Studia Mathematica, 248(1), 31-44.
0039-3223
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1803
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.4064/sm170915-27-12
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Polish Academy of Sciences. Institute of Mathematics
publisher.none.fl_str_mv Polish Academy of Sciences. Institute of Mathematics
dc.source.none.fl_str_mv Studia Mathematica. Mar. 2019; 248(1): 31-44
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/248
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1844623311357607936
score 12.559606