Quantum chemical and kinetic study of the CCl2 self-recombination reaction

Autores
Gómez, Nicolás D.; Azcárate, M. Laura; Codnia, Jorge; Cobos, Carlos J.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Revista con referato
Fil: Codnia, Jorge. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Codnia, Jorge. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
Fil: Gómez, Nicolás D. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
Fil: Azcárate, M. Laura. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
.
The temperature and pressure dependencies of the rate constant of the recombination reaction CCl2 + CCl2 +M?C2Cl4+M have been theoretically studied between 300 and 2000 K. Quantum-chemical calculations were employed to characterize relevant parts of the potential energy surface of this process. The limiting rate constants were analyzed using the unimolecular reaction theory. The resulting low pressure rate constant can be represented as k0 = [Ar] 3.5 10 23 (T/300 K) 8.7 exp( 1560 K/T) cm3 molecule 1 s 1. The high pressure rate constants derived from a simplified statistical adiabatic channel model (SSACM) and from a SACM combined with classical trajectory calculations (SACM/CT) are k1 = (1.7 ± 1.0) 10 12 (T/300)0.8 ± 0.1 cm3 molecule 1 s 1 and k1 = (5.4 ± 3.0) 10 13(T/300)0.7 ± 0.1 cm3 molecule 1 s 1. The falloff curves were represented in terms of these limiting rate constants. Reported experimental results are satisfactorily described with the present model. The calculations indicate that the CCl2 + CCl2 reaction proceeds via the stabilization of C2Cl4, with a contribution of the C2Cl3 +Cl? C2Cl4 reaction, and at sufficiently high temperatures the channel CCl2 + CCl2 --> C2Cl2 + 2Cl becomes relevant.
Fuente
Computational and Theoretical Chemistry. Dic. 2017; 1121: 1-10
https://www.sciencedirect.com/journal/computational-and-theoretical-chemistry/vol/1121/suppl/C
Materia
CCl2
C2Cl4
Quantum-chemical calculations
Statistical adiabatic channel model/classical
Trajectory calculations
Recombination reactions
Ciencias Físicas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/2313

id RIUNGS_2fc69a5a9dc579180d178c6f4f705f2a
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/2313
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Quantum chemical and kinetic study of the CCl2 self-recombination reactionGómez, Nicolás D.Azcárate, M. LauraCodnia, JorgeCobos, Carlos J.CCl2C2Cl4Quantum-chemical calculationsStatistical adiabatic channel model/classicalTrajectory calculationsRecombination reactionsCiencias FísicasRevista con referatoFil: Codnia, Jorge. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Codnia, Jorge. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.Fil: Gómez, Nicolás D. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.Fil: Azcárate, M. Laura. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina..The temperature and pressure dependencies of the rate constant of the recombination reaction CCl2 + CCl2 +M?C2Cl4+M have been theoretically studied between 300 and 2000 K. Quantum-chemical calculations were employed to characterize relevant parts of the potential energy surface of this process. The limiting rate constants were analyzed using the unimolecular reaction theory. The resulting low pressure rate constant can be represented as k0 = [Ar] 3.5 10 23 (T/300 K) 8.7 exp( 1560 K/T) cm3 molecule 1 s 1. The high pressure rate constants derived from a simplified statistical adiabatic channel model (SSACM) and from a SACM combined with classical trajectory calculations (SACM/CT) are k1 = (1.7 ± 1.0) 10 12 (T/300)0.8 ± 0.1 cm3 molecule 1 s 1 and k1 = (5.4 ± 3.0) 10 13(T/300)0.7 ± 0.1 cm3 molecule 1 s 1. The falloff curves were represented in terms of these limiting rate constants. Reported experimental results are satisfactorily described with the present model. The calculations indicate that the CCl2 + CCl2 reaction proceeds via the stabilization of C2Cl4, with a contribution of the C2Cl3 +Cl? C2Cl4 reaction, and at sufficiently high temperatures the channel CCl2 + CCl2 --> C2Cl2 + 2Cl becomes relevant.Elsevier2025-07-11T17:49:09Z2025-07-11T17:49:09Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfGómez, N. D., Azcárate, M. L., Codnia, J. y Cobos, C. J. (2017). Quantum chemical and kinetic study of the CCl2 self-recombination reaction. Computational and Theoretical Chemistry, 1121, 1-10.2210-271Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2313Computational and Theoretical Chemistry. Dic. 2017; 1121: 1-10https://www.sciencedirect.com/journal/computational-and-theoretical-chemistry/vol/1121/suppl/Creponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1016/j.comptc.2017.10.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-29T15:01:58Zoai:repositorio.ungs.edu.ar:UNGS/2313instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-29 15:01:59.023Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Quantum chemical and kinetic study of the CCl2 self-recombination reaction
title Quantum chemical and kinetic study of the CCl2 self-recombination reaction
spellingShingle Quantum chemical and kinetic study of the CCl2 self-recombination reaction
Gómez, Nicolás D.
CCl2
C2Cl4
Quantum-chemical calculations
Statistical adiabatic channel model/classical
Trajectory calculations
Recombination reactions
Ciencias Físicas
title_short Quantum chemical and kinetic study of the CCl2 self-recombination reaction
title_full Quantum chemical and kinetic study of the CCl2 self-recombination reaction
title_fullStr Quantum chemical and kinetic study of the CCl2 self-recombination reaction
title_full_unstemmed Quantum chemical and kinetic study of the CCl2 self-recombination reaction
title_sort Quantum chemical and kinetic study of the CCl2 self-recombination reaction
dc.creator.none.fl_str_mv Gómez, Nicolás D.
Azcárate, M. Laura
Codnia, Jorge
Cobos, Carlos J.
author Gómez, Nicolás D.
author_facet Gómez, Nicolás D.
Azcárate, M. Laura
Codnia, Jorge
Cobos, Carlos J.
author_role author
author2 Azcárate, M. Laura
Codnia, Jorge
Cobos, Carlos J.
author2_role author
author
author
dc.subject.none.fl_str_mv CCl2
C2Cl4
Quantum-chemical calculations
Statistical adiabatic channel model/classical
Trajectory calculations
Recombination reactions
Ciencias Físicas
topic CCl2
C2Cl4
Quantum-chemical calculations
Statistical adiabatic channel model/classical
Trajectory calculations
Recombination reactions
Ciencias Físicas
dc.description.none.fl_txt_mv Revista con referato
Fil: Codnia, Jorge. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Codnia, Jorge. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
Fil: Gómez, Nicolás D. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
Fil: Azcárate, M. Laura. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Departamento de Investigaciones en Láseres y sus aplicaciones; Argentina.
.
The temperature and pressure dependencies of the rate constant of the recombination reaction CCl2 + CCl2 +M?C2Cl4+M have been theoretically studied between 300 and 2000 K. Quantum-chemical calculations were employed to characterize relevant parts of the potential energy surface of this process. The limiting rate constants were analyzed using the unimolecular reaction theory. The resulting low pressure rate constant can be represented as k0 = [Ar] 3.5 10 23 (T/300 K) 8.7 exp( 1560 K/T) cm3 molecule 1 s 1. The high pressure rate constants derived from a simplified statistical adiabatic channel model (SSACM) and from a SACM combined with classical trajectory calculations (SACM/CT) are k1 = (1.7 ± 1.0) 10 12 (T/300)0.8 ± 0.1 cm3 molecule 1 s 1 and k1 = (5.4 ± 3.0) 10 13(T/300)0.7 ± 0.1 cm3 molecule 1 s 1. The falloff curves were represented in terms of these limiting rate constants. Reported experimental results are satisfactorily described with the present model. The calculations indicate that the CCl2 + CCl2 reaction proceeds via the stabilization of C2Cl4, with a contribution of the C2Cl3 +Cl? C2Cl4 reaction, and at sufficiently high temperatures the channel CCl2 + CCl2 --> C2Cl2 + 2Cl becomes relevant.
description Revista con referato
publishDate 2017
dc.date.none.fl_str_mv 2017
2025-07-11T17:49:09Z
2025-07-11T17:49:09Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Gómez, N. D., Azcárate, M. L., Codnia, J. y Cobos, C. J. (2017). Quantum chemical and kinetic study of the CCl2 self-recombination reaction. Computational and Theoretical Chemistry, 1121, 1-10.
2210-271X
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2313
identifier_str_mv Gómez, N. D., Azcárate, M. L., Codnia, J. y Cobos, C. J. (2017). Quantum chemical and kinetic study of the CCl2 self-recombination reaction. Computational and Theoretical Chemistry, 1121, 1-10.
2210-271X
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2313
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1016/j.comptc.2017.10.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Computational and Theoretical Chemistry. Dic. 2017; 1121: 1-10
https://www.sciencedirect.com/journal/computational-and-theoretical-chemistry/vol/1121/suppl/C
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1844623311619751936
score 12.559606