Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells
- Autores
- Delmont, Ignacio; Buena Maizon, Héctor; Mosqueira, Alejo; Barrantes, Francisco José
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Delmont, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina
Fil: Delmont, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina
Fil: Buena Maizon, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina
Fil: Mosqueira, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina
Fil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Abstract: Storm (stochastical optical reconstruction microscopy), a form of single-molecule nanoscopy, calls for a variety of statistical and mathematical operations to reconstruct the original objects from their noisy wide-field point spread functions [1]. We are interested in understanding the dynamics of the nicotinic acetylcholine receptor (nAChR) protein, a cell-surface neurotransmitter receptor. Analyzing the translational motion of nAChR molecules by single-particle tracking in living cells is a complex task. In order to understand how nAChR molecules associate/dissociate into/from nanometer-sized clusters over time, and to characterize their trajectories according to different mathematical models, we are developing analytical procedures based on artificial intelligence. Due to their speed of calculation and accuracy, deep learning models are clearly an improvement on classical models in biological image analysis and biomedical science. - Fuente
- Microscopy and Microanalysis. 2020, 26 (sup. 1)
- Materia
-
INTELIGENCIA ARTIFICIAL
PROTEINAS
NEUROTRANSMISORES
NANOSCOPIA
BIOMEDICINA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/14612
Ver los metadatos del registro completo
id |
RIUCA_fc8824b63627d6ad5261e01e87dda444 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/14612 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cellsDelmont, IgnacioBuena Maizon, HéctorMosqueira, AlejoBarrantes, Francisco JoséINTELIGENCIA ARTIFICIALPROTEINASNEUROTRANSMISORESNANOSCOPIABIOMEDICINAFil: Delmont, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; ArgentinaFil: Delmont, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; ArgentinaFil: Buena Maizon, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; ArgentinaFil: Mosqueira, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; ArgentinaFil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAbstract: Storm (stochastical optical reconstruction microscopy), a form of single-molecule nanoscopy, calls for a variety of statistical and mathematical operations to reconstruct the original objects from their noisy wide-field point spread functions [1]. We are interested in understanding the dynamics of the nicotinic acetylcholine receptor (nAChR) protein, a cell-surface neurotransmitter receptor. Analyzing the translational motion of nAChR molecules by single-particle tracking in living cells is a complex task. In order to understand how nAChR molecules associate/dissociate into/from nanometer-sized clusters over time, and to characterize their trajectories according to different mathematical models, we are developing analytical procedures based on artificial intelligence. Due to their speed of calculation and accuracy, deep learning models are clearly an improvement on classical models in biological image analysis and biomedical science.Cambridge University Press2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/146121431-927610.1017/S143192762000032XDelmont, I. et al. Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells [en línea]. Microscopy and Microanalysis. 2020, 26 (sup. 1). doi: 10.1017/S143192762000032X. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14612Microscopy and Microanalysis. 2020, 26 (sup. 1)reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:58:43Zoai:ucacris:123456789/14612instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:58:43.817Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells |
title |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells |
spellingShingle |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells Delmont, Ignacio INTELIGENCIA ARTIFICIAL PROTEINAS NEUROTRANSMISORES NANOSCOPIA BIOMEDICINA |
title_short |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells |
title_full |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells |
title_fullStr |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells |
title_full_unstemmed |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells |
title_sort |
Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells |
dc.creator.none.fl_str_mv |
Delmont, Ignacio Buena Maizon, Héctor Mosqueira, Alejo Barrantes, Francisco José |
author |
Delmont, Ignacio |
author_facet |
Delmont, Ignacio Buena Maizon, Héctor Mosqueira, Alejo Barrantes, Francisco José |
author_role |
author |
author2 |
Buena Maizon, Héctor Mosqueira, Alejo Barrantes, Francisco José |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
INTELIGENCIA ARTIFICIAL PROTEINAS NEUROTRANSMISORES NANOSCOPIA BIOMEDICINA |
topic |
INTELIGENCIA ARTIFICIAL PROTEINAS NEUROTRANSMISORES NANOSCOPIA BIOMEDICINA |
dc.description.none.fl_txt_mv |
Fil: Delmont, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina Fil: Delmont, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina Fil: Buena Maizon, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina Fil: Mosqueira, Alejo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina Fil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Abstract: Storm (stochastical optical reconstruction microscopy), a form of single-molecule nanoscopy, calls for a variety of statistical and mathematical operations to reconstruct the original objects from their noisy wide-field point spread functions [1]. We are interested in understanding the dynamics of the nicotinic acetylcholine receptor (nAChR) protein, a cell-surface neurotransmitter receptor. Analyzing the translational motion of nAChR molecules by single-particle tracking in living cells is a complex task. In order to understand how nAChR molecules associate/dissociate into/from nanometer-sized clusters over time, and to characterize their trajectories according to different mathematical models, we are developing analytical procedures based on artificial intelligence. Due to their speed of calculation and accuracy, deep learning models are clearly an improvement on classical models in biological image analysis and biomedical science. |
description |
Fil: Delmont, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Biología Celular y Molecular; Argentina |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/14612 1431-9276 10.1017/S143192762000032X Delmont, I. et al. Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells [en línea]. Microscopy and Microanalysis. 2020, 26 (sup. 1). doi: 10.1017/S143192762000032X. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14612 |
url |
https://repositorio.uca.edu.ar/handle/123456789/14612 |
identifier_str_mv |
1431-9276 10.1017/S143192762000032X Delmont, I. et al. Application of artificial intelligence strategies to the analysis of neurotransmitter receptor dynamics in living cells [en línea]. Microscopy and Microanalysis. 2020, 26 (sup. 1). doi: 10.1017/S143192762000032X. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14612 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
Microscopy and Microanalysis. 2020, 26 (sup. 1) reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638363738701824 |
score |
13.070432 |