A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor
- Autores
- Buena Maizon, Héctor; Barrantes, Francisco José
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina
Fil: Buena Maizon, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina
Abstract: We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor’s translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model. - Fuente
- Briefings in Bioinformatics Vol.23, No.1, 2022
- Materia
-
INTELIGENCIA ARTIFICIAL
APRENDIZAJE AUTOMÁTICO
APRENDIZAJE PROFUNDO
PROTEÍNA DE MEMBRANA
RECEPTOR DE NEUROTRANSMISORES
RECEPTOR DE ACETILCOLINA
COLESTEROL
SEGUIMIENTO DE PARTÍCULAS INDIVIDUALES
MICROSCOPÍA DE SUPERRESOLUCIÓN - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/14114
Ver los metadatos del registro completo
id |
RIUCA_dfdf4f1236314aff8216175003635f73 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/14114 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptorBuena Maizon, HéctorBarrantes, Francisco JoséINTELIGENCIA ARTIFICIALAPRENDIZAJE AUTOMÁTICOAPRENDIZAJE PROFUNDOPROTEÍNA DE MEMBRANARECEPTOR DE NEUROTRANSMISORESRECEPTOR DE ACETILCOLINACOLESTEROLSEGUIMIENTO DE PARTÍCULAS INDIVIDUALESMICROSCOPÍA DE SUPERRESOLUCIÓNFil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; ArgentinaFil: Buena Maizon, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; ArgentinaAbstract: We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor’s translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.Oxford University Pressinfo:eu-repo/date/embargoEnd/2100-01-012022info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/141141477-4054 (online)10.1093/bib/bbab435Buena Maizon, H., Barrantes, F. J. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor [en línea]. Briefings in Bioinformatics. 2022, 23 (1). doi: https://doi.org/10.1093/bib/bbab435. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14114Briefings in Bioinformatics Vol.23, No.1, 2022reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/embargoedAccess2025-07-03T10:58:36Zoai:ucacris:123456789/14114instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:58:36.739Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor |
title |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor |
spellingShingle |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor Buena Maizon, Héctor INTELIGENCIA ARTIFICIAL APRENDIZAJE AUTOMÁTICO APRENDIZAJE PROFUNDO PROTEÍNA DE MEMBRANA RECEPTOR DE NEUROTRANSMISORES RECEPTOR DE ACETILCOLINA COLESTEROL SEGUIMIENTO DE PARTÍCULAS INDIVIDUALES MICROSCOPÍA DE SUPERRESOLUCIÓN |
title_short |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor |
title_full |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor |
title_fullStr |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor |
title_full_unstemmed |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor |
title_sort |
A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor |
dc.creator.none.fl_str_mv |
Buena Maizon, Héctor Barrantes, Francisco José |
author |
Buena Maizon, Héctor |
author_facet |
Buena Maizon, Héctor Barrantes, Francisco José |
author_role |
author |
author2 |
Barrantes, Francisco José |
author2_role |
author |
dc.subject.none.fl_str_mv |
INTELIGENCIA ARTIFICIAL APRENDIZAJE AUTOMÁTICO APRENDIZAJE PROFUNDO PROTEÍNA DE MEMBRANA RECEPTOR DE NEUROTRANSMISORES RECEPTOR DE ACETILCOLINA COLESTEROL SEGUIMIENTO DE PARTÍCULAS INDIVIDUALES MICROSCOPÍA DE SUPERRESOLUCIÓN |
topic |
INTELIGENCIA ARTIFICIAL APRENDIZAJE AUTOMÁTICO APRENDIZAJE PROFUNDO PROTEÍNA DE MEMBRANA RECEPTOR DE NEUROTRANSMISORES RECEPTOR DE ACETILCOLINA COLESTEROL SEGUIMIENTO DE PARTÍCULAS INDIVIDUALES MICROSCOPÍA DE SUPERRESOLUCIÓN |
dc.description.none.fl_txt_mv |
Fil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina Fil: Buena Maizon, Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Barrantes, Francisco José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Barrantes, Francisco José. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina Abstract: We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor’s translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model. |
description |
Fil: Buena Maizon, Héctor. Pontificia Universidad Católica Argentina. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 info:eu-repo/date/embargoEnd/2100-01-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/14114 1477-4054 (online) 10.1093/bib/bbab435 Buena Maizon, H., Barrantes, F. J. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor [en línea]. Briefings in Bioinformatics. 2022, 23 (1). doi: https://doi.org/10.1093/bib/bbab435. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14114 |
url |
https://repositorio.uca.edu.ar/handle/123456789/14114 |
identifier_str_mv |
1477-4054 (online) 10.1093/bib/bbab435 Buena Maizon, H., Barrantes, F. J. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor [en línea]. Briefings in Bioinformatics. 2022, 23 (1). doi: https://doi.org/10.1093/bib/bbab435. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14114 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
Briefings in Bioinformatics Vol.23, No.1, 2022 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638362262306816 |
score |
13.13397 |